The Squaric Acid Derivatives $C_8O_4S_2$ and $C_8O_4Se_2$ – Crystal Structures, Explosive Thermal Behavior and the Preparation of Carbon Suboxide Selenide OC_3Se by Flash Vacuum Pyrolysis

Johannes Becka, Petra Krieger-Becka, and Klemens Kelmb

a Institute for Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany

b Institute for Inorganic Chemistry, Section for Inorganic Materials Research, Rheinische Friedrich-Wilhelms-Universität Bonn, Römerstr. 164, D-53117 Bonn, Germany

Reprint requests to Prof. Dr. Johannes Beck. Fax +49 (0)228 / 735660. E-mail: j.beck@uni-bonn.de

Z. Naturforsch. 61b, 123 – 132 (2006); received September 19, 2005

2,7-Diselenatricyclo[6.2.0.03,6]deca-1,3-diene-4,5,9,10-tetraone, $C_8O_4Se_2$, was prepared from 1,2-diselenosquarate and squaric acid dichloride. Its crystal structure and the structure of the already known sulfur analogue $C_8O_4S_2$ were determined ($C_8O_4S_2$: orthorhombic, Pca_{2_1}, $a = 1413.64(2)$, $b = 599.850(9)$, $c = 968.8(1)$ pm; $C_8O_4Se_2$: orthorhombic, $Pnnm$, $a = 415.46(2)$, $b = 894.29(5)$, $c = 1160.14(7)$ pm). The structures are not isotypic and show a different packing of the molecules whose symmetry deviate only slightly from D_{2h}. In the four-membered C_4 rings the C–C bonds represent one single bond, one double bond and two slightly shortened single bonds. The C_4 rings are thus to be considered as cyclobutene-dione fragments. The vigorous exothermic decomposition of the compounds that occurs on heating to 220 to 240 $^\circ$C shows that both are energetic materials. The explosions are accompanied by a heat evolution of -192 kJ/mol for $C_8O_4S_2$ and -224 kJ/mol for $C_8O_4Se_2$. Performing the decomposition of $C_8O_4S_2$ in a closed autoclave leaves a residue of the composition “C_6S” which was examined by transmission electron microscopy techniques and shown to consist mainly of amorphous carbon. This thermal behaviour is limiting the utilization of $C_8O_4S_2$ and $C_8O_4Se_2$ as precursors for the syntheses of OC_3S and the yet unknown OC_3Se via FVP. The formation of OC_3S could be proven by the reaction of the trapped, slightly yellow product (evaporation at 200 $^\circ$C, pyrolysis at 500 $^\circ$C, trapping at -196°C) with aniline which yielded thiomalonic acid dianilide, of which the crystal structure was determined (monoclinic, $C2/c$, $a = 2814.8(16)$, $b = 1201.7(8)$, $c = 809.2(4)$ pm, $\beta = 91.88(4)^\circ$, $V = 2736(3) \cdot 10^6$ pm3). The mass spectrum of $C_8O_4Se_2$ shows the strongest signal for OC_3Se^{+}, and FVP experiments (evaporation at 220 $^\circ$C, pyrolysis at 650 $^\circ$C, trapping at -75°C) yielded small amounts of a bright yellow material which rapidly converted into a black polymer.

Key words: Squaric Acid Derivatives, Energetic Materials, Amorphous Carbon, Carbon Suboxide Selenide, Flash Vacuum Pyrolysis