
A Strong Deviation from Vegard’s Rule: X-Ray Powder Investigations of
the Three Quasi-Binary Phase Systems BiOX–BiOY (X, Y = Cl, Br, I)

Egbert Keller and Volker Krämer
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The three quasi-binary phase systems BiOX–BiOY (X, Y = Cl, Br, I) have been investigated
by X-ray powder methods. No quaternary phases were found in the three systems. BiOCl–BiOBr
and BiOBr–BiOI form systems of unlimited mutual solubility. BiOCl–BiOI is a system of limited
solubility at the iodine-rich side. In the BiOBr–BiOI system a strong deviation from Vegard’s rule is
observed with respect to one of the lattice parameters. A few methods to quantify such a deviation
are briefly discussed and a possible explanation for the strong deviation in the BiOBr–BiOI system
is proposed. Error calculations have been performed to estimate uncertainties in the concentration
parameter x of the investigated mixtures. The crystal structure of BiOI has been re-determined by
single crystal structure analysis.
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Introduction

The simple bismuth oxide halides BiOX (X = Cl,
Br, I) were already discovered in the 19th century [1].
Their structures were originally determined by Sillén
in 1941 from powder diffraction data [2a], single crys-
tal structure analyses were performed for BiOCl [2b]
and BiOBr [2c] about half a century later. The three
compounds are isotypic and crystallize in space group
P4/nmm (PbFCl structure type). The atomic arrange-
ment consists of tetragonal [Bi2O2] layers which are
“sandwiched” by two halogen layers (Fig. 1). Vici-
nal Bi2O2X2 layers interact mainly via Van-der-Waals
forces. From BiOCl to BiOI the lattice parameter a
grows by only 0.1 Å (from 3.89 to 3.98 Å) while c
increases by 1.8 Å (from 7.35 to 9.13 Å).

Despite the fact that the BiOX compounds have
been known for more than a century no investi-
gations of reactions between them seem to have
been performed up to now except for some com-
mercially motivated work with the aim to design
new pigments [3]. In the work described below we
have investigated the three quasi-binary phase sys-
tems BiOCl–BiOBr, BiOCl–BiOI, and BiOBr–BiOI
by means of X-ray powder methods. The initial aim of
this work was to search for quaternary phases of for-
mula (BiO)n+mXnYm. Though the BiOX compounds
are isotypic (meaning that they are no primary candi-
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Fig. 1. The structure of BiOI as seen from [0 1 0] (left) and
from [1 1 0] (right). Shaded areas denote [Bi2O2] layers.

dates for the formation of new phases) steric considera-
tions made us believe that such quaternary compounds
might exist.

Furthermore we present the results of the still-to-be-
done single crystal structure re-determination of BiOI.

Results and Discussion

The single crystal structure of BiOI confirms the re-
sults (basing on powder data) by Sillén [2a] the largest
positional shift being 0.016 Å for Bi. The structure is
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Table 1. Crystal data and structure refinement for BiOI.

Empirical formula Bi I O
Formula weight 351.88
Temperature 293(2) K
Wavelength 0.71073 Å
Crystal system, space group tetragonal, P4/nmm
Unit cell dimensions [Å] a = 3.995(2), b = 3.995(2),

c = 9.151(5)
Volume 146.05(13) Å3

Z, Calculated density 2, 8.002 g/cm3

Absorption coefficient 70.555 mm−1

F000 288
Crystal size 0.300×0.175×0.003 mm
θ Range for data collection 2.22 to 28.18◦
Limiting indices −5 ≤ h ≤ 4, −2 ≤ k ≤ 5,

−11 ≤ l ≤ 11
Reflections collected / unique 871 / 134 [Rint = 0.1013]
Completeness to θ = 28.18◦ 95.7%
Absorption correction Numerical integration
Max. and min. transmission 0.7883 and 0.0314
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 134 / 0 / 10
Goodness-of-fit on F2 1.073
Final R indices [I > 2σ(I)] R1 = 0.0184, wR2 = 0.0416
R Indices (all data) R1 = 0.0184, wR2 = 0.0416
Extinction coefficient 0.0065(12)
Largest diff. peak and hole 2.137 and -1.145 eÅ−3

Table 2. Atomic coordinates and displacement parameters for
BiOI. The anisotropic displacement factor exponent takes the
form: −2π2[h2 a∗2U11 + . . . + 2hk a∗b∗U12]; Ueq is defined
as one third of the trace of the orthogonalized Ui j tensor. Ui j
(i �= j) = 0.

Atom x y z U11 = U22 U33 Ueq

Bi 1/4 1/4 0.1338(1) 0.0125(3) 0.0165(3) 0.0138(3)
I 1/4 1/4 0.6671(1) 0.0141(4) 0.0162(4) 0.0148(3)
O 1/4 3/4 0 0.011(2) 0.014(3) 0.012(2)

Table 3. Bond lengths [Å] for BiOI.

Bi-O 2.343(1) Bi-I 3.362(1)

visualized in Fig. 1, crystal and refinement data, posi-
tional and displacement parameters of the atoms, and
bond lengths are given in Tables 1 to 3∗.

The results of our powder X-ray investigations of
BiOX/BiOY mixtures indicate that actually no qua-
ternary compounds are formed in the three BiOX–
BiOY systems. In the two systems BiOCl–BiOBr
and BiOBr–BiOI the end members form solid solu-
tions over the whole composition range. In the sys-
tem BiOCl–BiOI, BiOI can dissolve up to 26% BiOCl

∗Further details of the crystal structure investigation are available
from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-
Leopoldshafen (Germany), on quoting the depository number CSD-
391354, the name of the author(s), and citation of the paper.

Fig. 2. a(x) (top) and c(x) (bottom) graphs for the three
BiOX–BiOY systems. Rectangles (“bars”) representing the
data points generally visualize errors (uncertainties) in x
and a(c). The rectangles at x = 0 and 1 (bottom) simply in-
dicate the positions of the respective data points (errors of
which are too small to produce a visible data “bar”).

but BiOCl can dissolve only very small amounts of
BiOI, if any (0 – 2%). In binary metal alloys, unlim-
ited solubility is usually only observed if the difference
in the atomic radii of the components is not more than
about 15% [4]. A similar rule exists also for the general
case of solid solutions [5]. For BiOX–BiOY, the corre-
sponding differences between the halogen ionic radii
(Cl = 1.81, Br = 1.95, I = 2.20 Å [6]) are about 8% for
Cl/Br and 12% for Br/I but 20% for Cl/I. Measured lat-
tice parameters for the different mixtures are collected
in Table 5 and visualized in Fig. 2 as functions of the
concentration parameter x = nB/(nA + nB) where nA,
nB are the molar quantities of end members A and B.
Note that the shapes of the data “points” in Fig. 2 vi-
sualize uncertainties in x as well as in the lattice pa-
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System t A [Å] B1 [Å] B2 [Å] θ [Å] ∆ t0.5 [Å]
Cl–Br a 3.892(1) 0.031(3) 0.003(3) −0.003(2) −0.000(1)
Br–I a 3.926(1) 0.046(3) 0.024(4); (3)a −0.023(3); (2) −0.006(1)
Cl–I a 3.77(2) 0.31(5) −0.10(3)

Cl–Br c 7.369(3) 0.82(4); (1) −0.08(4); (1) 0.08(3); (1) 0.021(7); (2)
Br–I c 8.101(3) 1.74(7); (1) −0.69(8); (1) 0.69(5); (1) 0.173(12); (2)
Cl–I c 7.375(3) 3.56(5); (2) −1.78(4); (2) 1.78(3); (1) [0.446(8); (4)]

cb 7.60(8) 3.0(2) −1.5(1) 1.4(1) [0.34(3)]

Table 4. Parameters quantifying the
2nd order functions in Fig. 2.

a Standard deviations printed in ital-
ics have been conventionally derived
from least-squares fitting; b data point
at x = 0 excluded.

rameter values (see section “Error Calculations”). With
respect to the pure end members of the three systems,
the lattice parameters for BiOBr and aBiOCl agree well
with those previously reported [2b,c] while those for
BiOI [2a] and cBiOCl [2b] are larger by 0.01 – 0.02 Å.

Quantifying deviations from Vegard’s rule

Lattice-constant-versus-concentration data in solid
solution systems of unlimited miscibility can in most
cases be closely approximated by functions of 1st

or 2nd order. If linearity (1st order function) is ob-
served, the system is said to follow Vegard’s rule [7].
In this case, the lattice parameter (named t in the fol-
lowing) varies with x according to

t(x) = tA(1−x)+ tBx = tA +(tB− tA)x = tV(x) (1)

with tA, tB being the lattice parameters of end mem-
bers A and B. In the case of 2nd order the deviations
from Vegard’s rule can be quantified by a so-called
“bowing parameter” θ [8]:

t(x) = tA +(tB − tA)x+ θ (x− x2)

= tV(x)+ θ (x− x2).
(2)

V. Steinwehr has introduced a related parameter φ [9].
By comparison we find φ = θ/(tA + tB). Thus, φ is a
relative bowing parameter with twice the average cell
parameter tV(0.5) as the reference value. Another quan-
tity, which has been used to measure deviations from
Vegard’s rule is the difference between t(x) and tV(x)
for x = 0.5 [8a, 10, 11], called ∆ t0.5 in the following. If
the function t(x) is of 2nd order we can derive

∆ t0.5 = t(0.5)− tV(0.5) = θ (0.5−0.25)= θ/4 (3)

from eq. (2). If any other values ∆ t x are known instead
of ∆ t0.5 and, again, if the function t(x) is of 2nd order,
θ can be approximated as an average value from ∆ t x

according to

θ = 〈∆ tx/(x− x2)〉. (4)

Like θ , ∆ t0.5 can in principle be replaced by a relative
parameter with (tA + tB) or (tA + tB)/2 as the reference
value. This is, however, reasonable only if all parts of
the structures in question are affected by changes in x.
Furthermore, deviations from Vegard’s law have also
been set in relation to the lattice parameter difference
|tA − tB| [9, 19b]; as a consequence, small absolute de-
viations from linearity result in large parameter values
if tA and tB are similar.

In the following, we will exclusively use the bow-
ing parameter θ and its easier to understand quarter,
∆ t0.5, as a measure of deviations from Vegard’s rule. In
praxi, θ can be determined by fitting a function of 2 nd

order ( f (x) = A + B1x + B2x2) to the data. This may,
of course, be done as an approximation even in cases
where functions of higher order seem more appropriate
to represent the data. From eq. (2) we get

t(x) = tA +(tB − tA + θ )x−θx2. (5)

By comparison and averaging we obtain

θ = [(B1 − tB + tA)−B2]/2 with

dθ =
1
2
(dB1

2 + dB2
2 + dtB

2 + dtA
2)1/2.

(6)

Application to BiOX–BiOY systems

In Fig. 2, to most of the different groups of data
[a vs. x] or [c vs. x] functions of 2nd order have been fit-
ted. In the case of c(x) (BiOCl–BiOI system) two func-
tions have been fitted to the data with x < 0.74 < 1: for
one function (solid line) no additional data have been
accounted for, for the other function (dotted line) the
point at x = 0 was included. Data which are obviously
independent of x have been fitted by straight lines with
a fixed slope of 0. Taking the possible errors in data
point positions into account (see section “Error Calcu-
lations”) it becomes clear that no functions of order > 2
are necessary to describe the various t(x) functions in
the BiOX–BiOY systems. The different parameters of
the 2nd order functions and the parameters θ and ∆ t0.5
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quantifying the deviation of t(x) from linearity in our
BiOX–BiOY (= BiOX1−xYx) systems are collected in
Table 4.

As can be seen from Fig. 2 and Table 4, a(x)
shows no significant deviation from Vegard’s rule for
BiOCl1−xBrx and a slight, but significant, negative de-
viation for BiOBr1−xIx. For BiOCl1−xIx (x < 0.74 < 1)
we get a strongly negative deviation with a slightly
negative B2 value such that there is no chance to con-
nect the curve with the data point at x = 0 without us-
ing a function of order > 2. A t(x) curve with simi-
lar (even more pronounced) features has been obtained
from density-functional theory calculations for a hard-
sphere model of a binary solid solution. From a se-
ries of curves corresponding to different radius differ-
ences the curve in question is the one calculated for the
largest difference (15%) (but note that different points
on this calculated curve correspond to different temper-
atures). The corresponding simulated phase diagram
corresponds to a eutectic system with limited solubil-
ity [12].

c(x) shows a slight, just significant positive devi-
ation in BiOCl1−xBrx and a clearly significant posi-
tive deviation with ∆ t0.5 = 0.17(1) Å in BiOBr1−xIx.
For BiOCl1−xIx (x < 0.74 < 1) we get a severe devi-
ation of “∆ t0.5” = 0.45(1) Å (or 0.34(3) Å if the data
point at x = 0 is excluded from the fitting). Quotation
marks are used here to indicate, that these ∆ t0.5 values
are “virtual”, as the phase doesn’t exist for x = 0.5. It
should be noted that for both versions of the c(x) func-
tion (dotted line and solid line in Fig. 2b) the slope
at x = 1 is zero. On the (unchecked) hypothesis that
the replacement of a smaller anion (Cl) by a larger
one (I) should never lead to a decrease of the lattice
parameters, this would be the minimal slope generally
possible.

When looking for ∆ t0.5 values derived from data
published for other systems with unlimited solubil-
ity (a search certainly far from completeness), we
found values of magnitudes less than 0.03 Å for III–
V semiconductors [8b, 13], binary compounds with
zincblende structure [11], and simple halides (AX) in-
cluding mixed-anion systems like KBr1−xIx [11, 14];
the majority of alloys obeys these limits as well, most
others yield values less than 0.075 Å [9, 15], a rather
extreme exception being c(x) in Cd–Mg at a tem-
perature of 310 ◦C with ∆ t0.5 = −0.31 Å [15]. In
most other inorganic systems with unlimited solubility,
|∆ t0.5| seems to be below 0.06 Å. Deviations leading
to |∆ t0.5| values in the range 0.03 to 0.05 Å are occa-

sionally addressed as “large” or “(very) strong” [16]
thus encouraging us to classify the deviation in our
BiOBr1−xIx system with ∆ t0.5 = 0.17 Å “strong” as
well. Naturally, systems with limited solubility (where
generally |“∆ t0.5”| values much larger than 0.10 Å
can occur [17]) are not part of the competition here.
Our BiOCl1−xIx system with “∆ t0.5” = 0.45(1) Å (see
above) provides a relevant example.

It should be noted that a similar “∆ t0.5” value
of 0.43(4) Å can be deduced from data published
for the related SrFCl1−xIx system which also crystal-
lizes with the PbFCl structure [18]. In this system,
the solubility is also very restricted (to ≈ 0.9 < x <
1). In contrast to this similarity, the data published
for SrFBr1−xIx [18] are “incompatible” with those for
BiOBr1−xIx in as much as there is a miscibility gap for
≈ 0.2 < x <≈ 0.6 with no deviation from Vegard’s law
for x > 0.6 and a severe negative deviation for x < 0.2.
We found no other data for mixed Br/I systems with a
PbFCl structure.

Attempt to explain the observed strong deviation from
Vegard’s rule

Returning to systems with unlimited solubility we
found ∆ t0.5 values > 0.1 Å (as in BiOBr1−xIx) also for
c(x) in Hf(Se1−xTex)2 (∆ t0.5 = 0.12 Å), Hf(S1−xTex)2
(0.22 Å) [10], and for the intercalates LixC6 (≈ 0.11 Å)
and LixTiS2 (≈ 0.20 Å) [19a]. The end members of
these systems (crystals of which all belong to the
hexagonal crystal family) exhibit structures similar to
BiOX: they consist of electrically neutral layers inter-
acting mainly via Van der Waals forces (with respect
to the Li compounds this is, of course, true only for
the end member with x = 0). Another feature common
with BiOBr1−xIx is that ∆a values are much smaller
than ∆c values and that ∆ t0.5 for a(x) is around zero.

For Hf(Ch1−xCh’x)2 and other M(Ch1−xCh’x)2 sys-
tems (Ch = chalcogenide) the positive deviations of
c(x) from Vegard’s law have been explained as fol-
lows [10]: It is assumed that the M–Ch bond length
varies linearily with x which necessarily leads to re-
pulsions between vicinal anions of the larger chalco-
gen, the two members of an anion pair belonging to the
two different anion layers of one and the same sand-
wich. Relaxation of the MCh2 sandwiches in order to
reduce these repulsions are then supposed to be mainly
responsible for the observed deviations from linearity.
At least for our BiOX compounds we would prefer an-
other explanation: First, as has been shown by EXAFS
measurements [11], M–X and M–Y bonds of different
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Fig. 3. A [1 1 0] view of the BiOI structure with one I atom
replaced by Br. The Br atom has been moved downwards
from its original position (see text), the rest of the structure
has been left unchanged.

lengths coexist in a mixed crystal M p(X1−xYx)q. Fur-
thermore, we assume that the strong bowing of c(x) is
mainly due to the weakness of anion-anion interactions
across the interface between two vicinal sandwiches.

In Fig. 3, an I atom in the structure of BiOI has
been replaced by a (smaller) Br atom. A section of
the structure (of thickness c) has been divided into two
parts: The “sandwich” of thickness sI-I and the anion-
anion interface of thickness wI-I. Comparatively strong
bonding forces have made the Br atom move from the
original I position towards the Bi atoms it is bonded
to such that a Bi-Br distance (approximately) equal to
the one in BiOBr has been adopted. The thickness s I-I

of the lower sandwich at the Br position will there-
fore be sBr-I = (sI-I + sBr-Br)/2, sBr-Br being the sand-
wich thickness in pure BiOBr. The average thickness
of the lower sandwich, s(av), will then be as demanded
by Vegard’s rule. To have the thickness w(av) of the
I-I interface (and thus the whole structure) also fol-
low this rule, wI-I (or, better, the distance d = c− sBr-I)
is required to shrink to wBr-I at the Br position, i.e.,
the centers of the atoms labelled Br and I in Fig. 3
would each have to move parallel −c (I) or +c (Br)
by about 0.26 Å (i.e., to the broken lines), drawing
along the atoms to which they are bonded (labelled
“Bi” in Fig. 3) and those to which the latter are bonded
(e.g. the atoms labelled “O” in Fig. 3). However, due
to the one-sidedness of the halogen coordination poly-
hedra this movement is induced by nothing else but
the weak Van der Waals attraction between Br and I,
and it is thwarted by strong I-I and I-O repulsions and

by the rigidity of the [Bi2O2]2+ layers. The balance
point between attraction and repulsion is therefore as-
sumedly reached at X positions “far” outside the re-
gion defined by the two broken lines in Fig. 3, thus
making the large positive deviation from Vegard’s law
(∆ t0.5 = 0.17 Å) understandable. For systems with all
coordination polyhedra closed like KBr1−xIx [14a] or
the arbitrarily selected Ba2Pb4F10(Br1−xIxF)2 contain-
ing single (Br,I) layers [20], much smaller ∆ t0.5 values
(< 0.02 Å) are found.

It should be noted that the model of Fig. 3 has been
designed under the assumption that ε = 1 [11], i.e., that
bond lengths in mixed crystals are (or tend to be) just
as they are in the end components, but the arguments
would be the same if ε was reduced to, say, 0.6 (cor-
responding to a partial convergence of M-X and M-Y
bond lengths like in mixed alkali halides [11]).

At first sight, the power of persuasion of the ex-
planation proposed above (as, by the way, of any
other explanation based on X, Y size differences!)
is somewhat reduced by the observation that the de-
viation of c(x) from linearity is much slighter in
the case of BiOCl1−xBrx. From radius differences
∆r (0.15 vs. 0.24 Å or 8 vs. 12%, see above)
one would initially expect an effect of at least half
the magnitude of that of BiOBr1−xIx. Instead, only
about one eighth is observed. The values found for
the Hf(Ch1−xCh’x)2 systems mentioned above and
containing also anion-anion interface layers seem
to be much more consistent: Hf(S1−xSex)2 (∆r =
0.14, ∆ t0.5 = 0.06 Å); Hf(Se1−xTex)2 (∆r = 0.23,
∆ t0.5 = 0.12 Å); Hf(S1−xTex)2 (∆r = 0.37, ∆ t0.5 =
0.22 Å) [10]. However, we feel free to include also the
“∆ t0.5” value for BiOCl1−xIx, which is a virtual value
but nevertheless quantifies the behaviour of this sys-
tem in the range (0.74 < x < 1). If now ∆ t0.5 is plot-
ted against ∆r we obtain a linear relationship for our
three BiOX–BiOY systems which is equally well de-
fined as the one for the three Hf(Ch1−xCh’x)2 systems.
This is shown in Fig. 4 where also the data for three
Ti(Ch1−xCh’x)2 systems [10] have been plotted. The
observation that the straight lines in Fig. 4 intersect the
(dotted) line ∆ t0.5 = 0 at positive ∆r values suggests
that there might be an additional effect at work which
would lead to negative deviations from Vegard’s law if
it was not overcompensated (for larger ∆r values) by
effects caused by the anion size difference. The com-
paratively large slope of the straight line representing
the BiOX1−xYx systems can be related to the increased
rigidity [19b] of the [Bi2O2] layers as compared to
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Fig. 4. Plot of the deviation parameter ∆ t0.5 vs. the anion
radius difference ∆ r for three groups of solid solutions. To
the ∆ r values an estimated error of 0.01 Å has been assigned.

those of the M layers of the mixed chalcogenide sys-
tems.

Finally, we will briefly discuss the above mentioned
intercalates LixC6 (∆ t0.5 ≈ 0.11 Å) and LixTiS2 (≈
0.20 Å), which are different cases, for once because
the approximation of the c(x) curves by functions of
2nd order is only very coarse [19]. Furthermore, in-
stead of two anions of different sizes, voids of par-
tial occupancy are present. Nevertheless we can cal-
culate a formal approximate “∆r” value for LixTiS2
from the S-S distances in TiS2 (3.48 Å [21]) and in
LiTiS2 (3.81 Å [22]) which can be seen as a difference
between the “void radius” and the Li radius. The corre-
sponding value of 0.16 Å seems rather low with respect
to the large ∆ t0.5 value. On the other hand, intercalated
Li atoms are oxidized to Li+1 and their electrons are
partially delocalized within the TiS2 layers [23]. One
might therefore assume that the weak attraction be-
tween interface S layers (at positions where the voids
are empty) is even more reduced by increased elec-
trostatic S-S repulsion. Furthermore, the hardness of
Li+ is certainly higher than that of, e.g., Br− or Se2−,
meaning that Li+ will presumably offer more resis-
tance against attraction of the two interface layers (at
vicinal positions with empty voids) than the latter (at
vicinal positions with a smaller anion).

Experimental Section

Chemical analyses have been performed by AAS (Bi) and
by argentometry (Cl,Br).

BiOCl: Commercial BiOCl (Merck, purity not spec-
ified) was used for the experiments. BiOCl (260.4):

calcd. Bi 80.24, Cl 13.61; found Bi 79.24,
Cl 13.40.

BiOBr was synthesized by heating a mixture of 1.470 g
(3.15 mmol) Bi2O3 (Merck, 99%) and 1.440 g (3.21 mmol)
BiBr3 (Heraeus, 99%) at 500 ◦C in an evacuated quartz am-
poule for 2 days. Excess BiBr3 was then separated from the
product by sublimation from 400 to 300 ◦C. The reaction
product was mortared and put into another evacuated quartz
ampoule. By sublimaton from 400 to 300 ◦C residual BiBr3
was removed. A powder diffractogram of the product showed
the (only) crystalline phase in it to be BiOBr. BiOBr (304.9):
calcd. Bi 68.54, Br 26.21; found Bi 68.03, Br 25.50.

BiOI was synthesized by heating a mixture of 0.932 g
(2 mmol) Bi2O3 (Merck, 99%) and 1.240 g (2.1 mmol) BiI3
(Aldrich, 99%) at 550 ◦C in an evacuated quartz ampoule for
2 days. Excess BiI3 was then separated from the product by
sublimation from 300 to 200 ◦C. The product was mortared
and put into another evacuated quartz ampoule. By sublima-
ton from 300 to 200 ◦C residual BiI3 was removed. A powder
diffractogram of the product showed the (only) crystalline
phase in it to be BiOI. BiOI (351.9): calcd. Bi 59.39; found
Bi 59.89. I was not determined as BiOI can only be dissolved
in HNO3 which oxidizes I− to I2 and IO3

−.
Single crystals of BiOI: About 0.05 g BiOI powder was

sealed in an evacuated quartz ampoule (length: 7 cm, internal
diameter 0.5 cm, pressure 2 · 10−6 Torr). The ampoule was
placed in a half-shell two-zone furnace with the two half-
shells separated by a sheet of fiberfrax (with a small hole)
such that one half of the ampoule was positioned in the lower
shell and the other half in the upper shell. The lower shell was
heated to 725 ◦C while the upper shell was heated to 700 ◦C.
After two days single crystals had grown in the upper part
of the ampoule, some of which were black and bulky, while
most others were very thin bright red platelets.

Structure re-determination of BiOI: One of the red
platelets described above of size 0.30× 0.175× 0.003 mm
was investigated on a Bruker AXS SMART diffractome-
ter with a CCD detector. After performing a numerical ab-
sorption correction the known structure was refined to R1 =
0.0184 [24]. For the final calculations the cell parameters ob-
tained by the single crystal diffractometer (a = 3.9739(5),
c = 9.115(1) Å) were replaced by those determined by pow-
der diffraction (see below). The large differences of 0.02 Å
in a and 0.04 Å in c are probably due to the extreme platelet
shape of the crystal and the high absorption coefficient. To
check this, a number of other single crystals (red platelets)
grown in the same ampoule were mortared. A diffractogram
of the powder obtained this way corresponded to lattice pa-
rameters which were identical (within 1.5 standard devia-
tions) to those given in Table 5 for pure BiOI.

Mixtures of BiOX and BiOY, each mixture amounting
to 100±5 mg, were formed by mixing weighed amounts of
BiOX and BiOY in a mortar. The mixtures were heated in
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x dx a c x dx a c
BiOCl1−xBrx 0.700 0.0074 3.9705(3) 8.984(1)
0.000 0.0000 3.892(2)a 7.375(2) 0.800 0.0065 3.9794(3) 9.059(1)
0.100 0.0045 3.8948(4) 7.443(3) 0.900 0.0052 3.9874(2) 9.111(1)
0.200 0.0059 3.8992(3) 7.532(2) 1.000 0.0000 3.995(2) 9.151(5)
0.300 0.0070 3.9023(3) 7.606(3) BiOCl1−xIx (chlorine-rich phase)
0.400 0.0077 3.9040(1) 7.683(1) 0.000 0.0000 3.892(2) 7.375(2)
0.500 0.0080 3.9083(2) 7.759(3) 0.002 0.0027 3.8926(2) 7.384(2)
0.600 0.0079 3.9133(3) 7.832(1) 0.005 0.0033 3.8914(4) 7.377(3)
0.700 0.0074 3.9153(3) 7.904(1) 0.100 0.0042 3.8914(2) 7.379(1)
0.800 0.0065 3.9185(2) 7.9747(8) 0.200 0.0057 3.8900(2) 7.376(2)
0.900 0.0052 3.9218(1) 8.0411(3) 0.400 0.0077 3.8910(5) 7.381(2)
1.000 0.0000 3.9270(5) 8.106(1) BiOCl1−xIx (iodine-rich phase)
BiOBr1−xIx 0.400 0.0077 3.9568(8) 9.03(1)
0.000 0.0000 3.9270(5) 8.106(1) 0.600 0.0081 3.958(1) 9.03(1)
0.100 0.0045 3.9311(2) 8.2682(9) 0.700 0.0076 3.9575(2) 9.040(5)
0.200 0.0060 3.9362(2) 8.4171(7) 0.760 0.0072 3.9604(2) 9.050(1)
0.300 0.0070 3.9424(3) 8.563(1) 0.820 0.0070 3.9696(5) 9.093(3)
0.400 0.0077 3.9478(2) 8.6860(8) 0.880 0.0059 3.9791(3) 9.121(1)
0.500 0.0080 3.9545(3) 8.800(2) 0.940 0.0050 3.9878(2) 9.140(1)
0.600 0.0079 3.9622(3) 8.903(2) 1.000 0.0000 3.995(2) 9.151(5)

Table 5. Lattice constants [Å]
in the BiOX1−xYx systems.

a Numbers printed bold face re-
fer to average values obtained from
multiple measurements of the same
compound.

small evacuated quartz ampoules to 550 ◦C for three days.
Samples taken from the mixtures were then measured on
a Stoe STADI-P powder diffractometer with NBS-Si as an
external standard. All diffractograms of BiOCl–BiOBr and
BiOBr–BiOI mixtures, as well as those of BiOCl–BiOI mix-
tures with x < 0.02 and x > 0.74, could be completely in-
dexed and refined by assuming the presence of one tetragonal
phase. Lattice constants were determined with the software
WinXPow [25] and are given in Table 5. Selected mixtures
were then mortared and heated for another 2 days to 550 ◦C.
Lattice constants did not change significantly upon this pro-
cedure indicating that the reactions had been complete al-
ready after the first heating.

Error calculations

Often, when lattice constants are discussed as functions
of x, no special attention is paid to the accuracy of the stated x
values of the different mixtures investigated. However, in the
above experiments, the x values have simply been calculated
from the masses of the two components. This method of de-
termining x certainly suffers from two sources of potential
errors: weighing errors and impurities of the educts.

Effect of weighing errors: All BiOX–BiOY [“A/B”] mix-
tures were designed to amount to 100±5 mg. The accuracy
of the lab scale used, dm, is known to be about 0.3 mg. In
assuming a linear error propagation (according to |(dx)W| =
|(∂x/∂mA)||dmA|+ |(∂x/∂mB)||dmB|) the error in x, (dx)W,
can be calculated by

(dx)W = (MA/MB)[1+x(MB/MA−1)]2dm/(mA +mB) (7)

with mQ = mass, MQ = molar mass of end member
Q(Q = A,B), and (mA +mB) used as a constant. If MA ≈ MB,

eq. (10) simplifies to (dx)W ≈ dm/(mA +mB), i.e., (dx)W ≈
0.003 for all x(�= 0,1) in the present case. For x = 0 and 1,
weighing errors have no effect and (dx)W = 0.

Effect of impurities: The purity of the BiOX compounds
was initially checked by powder X-ray diffraction only. How-
ever, an impurity amounting to less than about 2% (mo-
lar) cannot be detected by this method. The error in x,
(dx′)P, caused by such an impurity can be calculated us-
ing the modified linear error propagation relation (dx′)P =
(∂x/∂nA)dnA + (∂x/∂nB)dnB(nQ = molar amount of end
member Q) which has been formulated without using abso-
lute quantities as dnA and dnB can never be greater than 0.
We designate the molar fractions which consist of impurities
in A and B as εA and εB, respectively (with εA, εB > 0!).
Then dnA = −εAnA and dnB = −εBnB. Taking into account
that (nAnB)/(nA +nB)2 = x−x2, we obtain

(dx′)P = (x−x2)(εA − εB). (8)

|(dx′)P| is zero for x = 0,1; it reaches a maximum at
0.25(εA − εB) for x = 0.5. Other than usual in error calcu-
lations, the positivity of εA and εB implies that (dx′)P is a
quantity for which the corresponding error bars point only to
one side of the data points. The largest errors occur if only
one component is contaminated. For example, if only A is
contaminated by, say, 3%, then (dx)max = 0.25εA = 0.0075;
if only B is contaminated by 3%, then (dx)max = −0.0075.
As in the present case any of the two end components could
be pure and any of them could be contaminated (with εA =
εB = ε), both signs have to be accounted for and we replace
(dx′)P by the quantity (dx)P (which now is supposed to cover
both signs) according to

(dx)P = (x−x2)ε. (9)
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In Fig. 2, the horizontal widths of the data “points” symbol-
ize errors dx = (dx)W +(dx)P, where the former have been
calculated according to eq. (7), the latter according to eq. (9)
by assuming ε = 0.02.

The results of the chemical analyses (see above) per-
formed at a later stage as an additional check support the
view that impurities in our educts are less than 2% or – at
least – do not exceed 2% substantially.

Errors in lattice parameters: From the least-squares pro-
cedure in our indexing software the errors in a and c were
in the ranges (1 – 7)·10−4 and (0.5 – 5)·10−3 Å, respectively
(see Table 5). However, repeated measurements of some se-
lected samples showed the errors rather to be 1 · 10−3 for a
and 5 · 10−3 Å for c. These values were therefore uniformly
taken for all data points with x �= 0,1 in Fig. 2. For x = 0
and 1, the standard deviations obtained from the averaging
of multiple measurements of the end members were used.

Errors in 2nd order function parameters: As usual in least-
squares analyses, the standard deviations of A, B1 and B2
have been calculated by the visualizing software [26] from
the deviations of the data points from the calculated func-

tion only. Uncertainties in data point positions have not been
accounted for. To estimate the accuracy of the refined pa-
rameters as affected by the data point position errors, 2nd

order functions have also been fitted to sets of data points
at x−dx,t +dt and others at x+dx,t−dt. Averaging the cor-
responding pairs of A, B1 and B2 resulted in practically the
same parameter values as before, but in many cases in larger
values for their standard deviations. In Table 4, the larger of
the two values (the one derived conventionally and the one
derived by the above procedure) is given; the former one is
added as an alternative, but only in cases where it is smaller
than the latter.
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