Acyclische und cyclische Silylazine und Azinylsilane

Acyclic and Cyclic Silyalzines and Azinylsilanes

N. Armbruster, U. Klingebiel und M. Noltemeyer

Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany

Sonderdruckanforderungen an Prof. Dr. Uwe Klingebiel. Fax: +49(0)551/39-3373. E-mail: uklinge@gwdg.de

Z. Naturforsch. 60b, 1123 – 1132 (2005); eingegangen am 25. Juli 2005

C-lithiated bis(*tert*-butyl-methyl)ketazine reacts with halosilanes to give the monosilylketazines, *t*-Bu(Me)C=N-N=C(*t*-Bu)-CH₂R, (1-7). (1: R = SiMe₃; 2: R = SiClMe₂; 3: R = SiClMePh; 4: R = Cl₂SiPh; 5: R = SiCl₃; 6: R = SiMe₂Ph; 7: R = F₂SiN(*t*-Bu)SiMe₃). The bis(ketazinyl)silanes [*t*-Bu(RCH₂) C = N-N = CCH₂-*t*-Bu]₂ SiMe₂ **8**, **9** are formed in the reaction of the same lithiated ketazine or **1** with Cl₂SiMe₂ in a molar ratio of 2 : 1, (**8**: R = H; **9**: R = SiMe₃). Di(silyl)ketazines (**10**, **11**) are obtained from lithiated **1** and ClSiMe₂Ph in a molar ratio of 1 :1 and from dilithiated ketazine with F₂Si(*i*-Pr)₂ in a molar ratio of 1 : 2 [*t*-Bu(RH₂C)C=N-N=C(CH₂R')*t*-Bu, **10**: R = SiMe₃, R' = SiMe₂Ph; **11**: R,R' = FSi(*i*-Pr)₂]. The tris(ketazinyl)fluorosilane **12** is isolated from the reaction of SiF₄ with the lithiated ketazine. 2-Alkenyl-1,2-diaza-3-sila-5-cyclopentenes, *t*-Bu(CH₂)C-[N-SiR,R'-CH₂-C(*t*-Bu)=N], (**14** - **17**) are obtained from the dilithiated ketazine and Hal₂SiRR'. (**14**: Hal = Cl, R = Me, R' = Ph; **15**: Hal = F, R = *t*-Bu, R' = Ph; **16**: Hal = F, R = *t*-Bu, R' = F; **17**: Hal = F, R = N(*t*-Bu)SiMe₃, R' = F). X-ray structure analyses are presented for **7**, **11**, and **17**.

Key words: Ketazines, Silylazines, Azinylsilanes, Diazasilacyclopentenes

Einführung

Hydrazone und Azine sind Reaktionsprodukte des Hydrazins mit Aldehyden und Ketonen. Die Stoffklasse der Azine wurde von T. Curtius 1889 entdeckt [1, 2]. Inzwischen kommen Azine in unterschiedlichen Industriezweigen zum Einsatz. Aromatische und aliphatische Azine werden als Stabilisatoren in Benzin, Seifen, chlorierten Kohlenwasserstoffen, Silberhalogenid-Emulsionen und Industrieölen verwendet. Ferner finden Azine Anwendung bei der Herstellung von Harzen und Lacken, da sie mit Metallen stabile Komplexe bilden [1, 2]. Bei der Verarbeitung von Kunststofffasern, -geweben und -folien erhöhen sie deren Festigkeit und Dehnbarkeit [1, 2].

Reaktionen N-organyl-substituierter Hydrazone mit Halogenverbindungen der Elemente der 4. und 5. Hauptgruppe des Periodensystems sind schon vor Jahren mit Erfolg durchgeführt worden [3-10]. So stabilisiert das Hydrazongerüst Radikalkationen des 1,2-Diaza-3-sila-3,5-cyclopentens [11] und exocyclische P=C-Bindungen in 1,2-Diaza-3-phospha-3,5-cyclopentenen [3-6]. Analoge Sliciumverbindungen unterliegen einer (2+2)-Cycloaddition und bilden Spirocyclen [3–9]. Intermediäre 1,2-Diaza-3-sila-3,5-cyclopentadiene dimerisieren zu tricyclischen Verbindungen [9].

Hydrazone bilden mit Alkalimetallen sowie mit Lithiumorganylen Monoanionen in 1- und Dianionen in 1,4-Position. Dies erlaubt eine vielfältige Substitutions- und Cyclisierungs-Chemie dieser Substanzklasse mit kovalenten Elementhalogeniden. Eine vergleichbare Chemie der verwandten Azine, die ebenfalls Monoanionen in 1-, jedoch Dianionen in 1,6-Position bilden, ist wenig untersucht worden. Über erste Reaktionen der Azine mit Halogenboranen sowie die Mono- und Disubstitution mit einer Trimethylsilylgruppe berichteten Meller *et al.* im Jahr 2000 [12, 13]. Halogensilyl- oder cyclische Silylazine und -ketazine sind bisher nicht publiziert und Gegenstand dieser Arbeit.

Ergebnisse und Diskussion

Isomerie der Azine

Die Isomerie der Azine entspricht der C=N-Isomerie [14]. Sowohl die Imin-Enamin-Tautomerie als auch die photochemische (E/Z)-Isomerisierung

0932-0776 / 05 / 1100-1123 \$ 06.00 © 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

sind untersucht worden. Änderungen der chemischen Eigenschaften beruhen auf der *syn-* und *anti*-Konfiguration der Azine:

Die Isomere werden bezüglich der Nähe des freien Elektronenpaares am Stickstoff zu R_1 als Ant-Anti-, Anti-Syn- und Syn-Syn-Konformere bezeichnet [15, 16]. Sterisch anspruchsvolle Substituenten können die Isomerenbildung allerdings verhindern. Setzt man beispielsweise für R_1 eine Ethyl- und R_2 eine Methylgruppe als Substituenten ein, treten alle Isomere auf [15]. Wird der sterische Anspruch erhöht und für R_1 statt einer Ethyl eine Isopropylgruppe verwendet, erhält man die Isomere Anti-Anti: Anti-Syn im Verhältnis 9:1 [15].

Als Ausgangsverbindung für diese Arbeit wurde das Di(*tert*-butyl-methyl)ketazin gewählt. Der sterische Anspruch der *tert*-Butylgruppe unterbindet die Bildung eines Isomerengemisches. Es entsteht nur das Ant-Anti-Isomer [17]. In 1- und 6-Position, d. h. an den α -C-Atomen, besitzt das Azin acide Wasserstoffatome und kann somit dort metalliert werden.

Silylierte Azine

Di-(*tert*-butyl-methyl)ketazin reagiert quantitativ mit *n*-Butyllithium unter Butanabspaltung und Lithiumsalz-Bildung. Obwohl keine Kristallstrukturanalyse lithiierter Ketazine bekannt ist, kann auf Grund des Reaktionsverhaltens und strukturanalytisch untersuchter borsubstitutierter Ketazine die Koordination des Lithiumions an ein α -C-Atom und ein N-Atom angenommen werden.

Die Reaktion von monolithiiertem Di(*tert*-butylmethyl)ketazin mit Halogensilanen im molaren Verhältnis 1 : 1 führt bei 0 °C zu den Silylketazinen 1-7.

8: R = H, 9: R = SiMe₃

Im ¹H-NMR-Spektrum von **7** spaltet das Signal der CH₂-Gruppierung bei 2,23 ppm zum A-Teil eines AA'XX'-Multipletts auf, dessen X-Teil sich im ¹⁹F-NMR wieder findet. Die SiF₂-Gruppe zeigt im ²⁹Si-NMR-Spektrum ein Triplett bei -40,2 ppm mit einer ¹J_{SiF}-Kopplung von 283 Hz.

Beim Einsatz reaktiver Halogensilane, wie Cl₂SiMe₂, werden Nebenreaktionen – Disubsti-

tution und/oder Ringbildung – beobachtet. Die Nebenprodukte können bei inverser Reaktionsführung im molaren Verhältnis 2:1 gezielt dargestellt werden. Zum Beispiel reagieren das Monolithiumsalz **A** oder lithiiertes **1** mit Cl₂SiMe₂ zu den Bis(ketazinyl)silanen **8** und **9**. Es handelt sich bei R. T. um gelbe und zähflüssige Substanzen, die im Vakuum unzersetzt destillierbar sind.

Kristallstruktur von 7

Verbindung 7 ist ein hellgelber Feststoff, der bei der Destillation in der Vorlage erstarrt. Durch Umkristallisation aus *n*-Hexan wurden gelbe Kristalle erhalten, die zur Röntgenstrukturanalyse geeignet schienen (Abb. 3. Tab. 4).

7 bildet ein monoklines Kristallsystem mit der Raumgruppe $P2_1/c$. Die Ketazinstruktur ist erhalten, aber das C3-N2-N1-C2-Gerüst ist um 53.7° tordiert.

Abb. 3a. Kristallstruktur von 7.

Tab. 1. Ausgewählte Bindungslängen [pm] und -winkel $[^{\circ}]$ von 7.

C1-C2	152,5 (9)	Si1-N3	170,3 (5)
C2-N1	123,5 (12)	N3-C15	152,0 (6)
N1-N2	141,7 (6)	N3-Si2	178,5 (5)
N2-C3	130,8 (10)	C2-C20	153,6 (9)
C3-C4	150,3 (6)	C3-C30	150,6 (8)
C1-Si1	186,1 (4)		
Si1-F1	159,5 (3)		
C4-C3-N2	121,1 (6)	Si1-N3-C15	120,2 (4)
C3-N2-N1	115,8 (4)	Si1-N3-Si2	117,3 (3)
N2-N1-C2	118,2 (5)	Si2-N3-C15	122,1 (4)
N1-C2-C1	123,5 (5)	F1-Si1-F2	101,9 (2)
C2-C1-Si1	119,3 (4)	F2-Si1-N3	114,8 (2)
C1-Si1-N3	115,0 (2)		

Abb. 3b. Blick auf die N2-N1-C2-C1-Ebene von 7.

Die CNN-Winkel sind mit 115,8° und 118,2° etwas kleiner als der ideale Winkel eines sp²-hybridisierten Stickstoffatoms. Die C=N-Doppelbindungslängen sind unterschiedlich lang. Die N2-C3-Bindung liegt mit 130,8 pm im typischen Bereich, während die C2-N1-Bindung mit 123,5 pm deutlich kürzer ist. Das Atom N3 hat eine planare Koordination. Beim Blick auf die Ebene der Atome N2-N1-C2-C1 wird ersichtlich, dass C3 und Si1 in cis-Position zueinander stehen.

1.6-Di(silyl)ketazine 10 und 11

Unsymmetrisch di(silyl)substituierte Ketazine sind ausgehend von lithiierten Ketazinen mit Halogensilanen gezielt zugänglich.

Wird lithiiertes **1** mit dem im Vergleich zum Chlorsilan reaktionsfreudigeren FSiMe₂Ph umgesetzt, entsteht bereits bei einer Reaktionstemperatur von -60 °C das Di(silyl)ketazin **10** (Gl. (3)).

Tab. 2. Ausgewählte gemittelte Bindungslängen [pm] und - winkel [°] von 11.

C1-C2	150,8 (5)	Si1-F1	161,1 (2)
C2-N1	128,5 (4)	Si2-F2	161,1 (2)
N1-N2	143,2 (3)	C3-C30	152,8 (5)
N2-C3	127,8 (4)	C2-C20	152,0 (4)
C3-C4	150,5 (5)	Si1-C13	185,8 (3)
C1-Si1	187,4 (3)	Si1-C10	186,4 (3)
C4-Si2	187,7 (3)		
C1-C2-N1	124,2 (2)	F1-Si1-C13	105,0 (2)
C2-N1-N2	113,4 (2)	C13-Si1-C10	113,6 (2)
N1-N2-C3	113,1 (3)	C13-Si1-C1	108,5 (2)
N2-C3-C4	124,8 (3)	C10-Si1-F1	105,5 (2)
Si1-C1-C2	119,1 (2)	C1-Si1-C10	115,3 (2)
F1-Si1-C1	108,2 (2)		

Verbindung **10** ist thermisch stabil und im Vakuum unzersetzt destillierbar. Wird Di(*tert*butylmethyl)ketazin mit zwei Moläquivalenten n-C₄H₉Li versetzt, entsteht ein Dilithiumsalz, das mit Difluordiisopropylsilan im molaren Verhältnis 1:2 bei -50 °C zum symmetrisch substituierten 1.6-Di(silyl)ketazin **11** reagiert. (Gl. (4)).

Verbindung **11** ist ein gelber Feststoff, der nach der Destillation erstarrt. Einkristalle werden durch Kristallisation aus *n*-Hexan erhalten.

Kristallstruktur von 11

11 kristallisiert in der triklinen Raumgruppe $P\bar{1}$ mit vier Molekülen in der asymmetrischen Einheit (Tab. 4, Abb. 4) Die Atome C1-C2-N1-N2-C3-C4 bilden eine Ebene, aus der das Si1-Atom um 47,4 pm und das Si2-Atom um 48,9 pm in trans-Stellung herausragen. Die CNN-Winkel betragen 113° und die C=N-Doppelbindungen haben eine Länge von 127,8 bzw. 128,5 pm. Die Si-F-Bindungen liegen mit 161 pm im erwarteten Bereich. Der C1-Si1-C10-Winkel ist mit 115,3° geweitet, während der F1-Si1-C13-Winkel mit 105,0° etwas kleiner als der Tetraederwinkel ist.

Fluor-tri(ketazinyl)silan (12)

Lithiiertes 1 reagiert bei -70 °C mit SiF₄ zum bisher einzigen Trisubstitutionsprodukt (12). Verbindung 12 ist eine gelbe Flüssigkeit, die im Vakuum unzersetzt destilliert werden kann.

Abb. 4. Kristallstruktur von 11.

Cyclisierung des Dilithium-di(tert-butylmethyl)ketazins mit Dihalogensilanen

Bei der Synthese von **11** (Gl. (4)) wurde als Nebenprodukt das 1,2-Diaza-3-silacyclopenten **13** isoliert,

(4)

Abb. 5. Kristallstruktur von 17.

das bei einer Reaktionsführung mit dilithiiertem Ketazin und Diisopropylfluorsilan im molaren Verhältnis 1:1 als Hauptprodukt entsteht (Gl. (6)).

Analog reagiert das Dilithium-Ketazid mit $Cl_2SiMePh$, $F_2Si(t-Bu)Ph$, $F_3Si(t-Bu)$ und $F_3SiN(t-Bu)SiMe_3$ zu den Heterocyclen 14–17. Die Verbindungen 14–16 werden als hellgelbe Flüssigkeiten isoliert, 17 kristallisiert nach der Destillation aus. In

Tab. 3. Ausgewählte Bindungslängen [pm] und -winkel [°] von **17**.

von 17.				
C1-C2 151,2 (2)		C1-C2-N1	118,8 (2)	
C2-N1	128,5 (2)	C2-N1-N2	113,3 (1)	
N1-N2	141,7 (2)	N1-N2-Si1	112,9 (1)	
N2-C3	141,5 (2)	N2-Si1-C1	91,5 (1)	
C3-C4	132,6 (3)	Si1-C1-C2	102,5 (1)	
C1-Si1	185,7 (2)	Σ (Innenwinkel)	539,0	
N2-Si1	173,6 (2)	N1-N2-C3	117,7 (1)	
Si1-F1	159,4 (1)	N2-C3-C4	117,7 (1)	
Si1-N3	170,9 (2)	F1-Si1-N2	106,9 5 (7)	
N3-Si2	177,1 (2)	C1-Si1-F1	110,0 (7)	
N3-C40	153,3 (2)			

den ¹H-NMR-Spektren von **14–17** tritt das Signal der CH₂-Gruppe als AB-Teil eines ABX-Systems auf. Durch Umkristallisation des Diazasilacyclopentens **17** aus *n*-Hexan wurden röntgentaugliche Kristalle erhalten.

Kristallstruktur von 17

Verbindung **17** kristallisiert in der triklinen Raumgruppe $P\bar{1}$ (Abb. 5, Tab. 3, 4). Die Summe der Innenwinkel von **17** beträgt 539,0°. Somit ist der C1-C2-N1-N2-Si1-Ring planar (Abb. 5). Das C4-C3-N2-N1-Ketazin-Teilgerüst ist um rund 32° tordiert. Die Winkelsumme an den N2-Atomen ergibt für **17** 360,0°. Die Si1-N3-Bindungen sind auf Grund des –I-Effektes

(6)

		7	11	17
Summenformel		$C_{19}H_{41}F_2N_3Si_2$	$C_{24}H_{50}F_2N_2Si_2$	C19H40FN3Si2
Molare Masse [g/mol]		405,72	460,84	385,71
Temperatur [K]		200(2)	200(2)	200(2)
Wellenlänge [pm]		71,073	71,073	71,073
Kristallsystem		monoklin	triklin	triklin
Raumgruppe		$P2_1/c$	$P\bar{1}$	$P\bar{1}$
Zelldimensionen	а	621,22(12) pm	1025,3(2) pm	892,2(4) pm
	b	1619,9(3) pm	1500,2(3) pm	1188,1(5) pm
	с	2434,7(5) pm	2006,4(4) pm	1268,9(6) pm
	α	90°	74,16(3)°	96,49(4)°
	β	97,33(3)°	83,86(3)°	104,49 (2)°
	γ	90°	72,98(3)°	111,96 (2)°
Zellvolumen [nm ³]		2,301(8)	2,8378(10)	1,1753(9)
Ζ		4	4	2
Dichte (ber.) [mg/m ³]		1,109	1,079	1,090
Absorptionskoeffizient		$0,169 \text{ mm}^{-1}$	$0,151 \text{ mm}^{-1}$	$0,166 \text{ mm}^{-1}$
F(000)		888	1016	424
Kristallgröße [mm ³]		$1,00 \times 0,90 \times 0,80$	$1,00 \times 0,80 \times 0,40$	$1,00 \times 1,00 \times 0,40$
Gem. θ -Bereich		3,54° – 25,04°	3,52° 22,47°	3,53° - 25,02°
Indexgrenzen	<i>(h)</i>	$-7 \le h \le 7$	$-10 \le h \le 11$	$-10 \le h \le 10$
	(<i>k</i>)	$-19 \le k \le 19$	$-15 \le k \le 16$	$-14 \le k \le 14$
	(l)	$-10 \le l \le 29$	$-19 \le l \le 21$	$-15 \le l \le 15$
Anzahl Reflexe		3008	9082	6699
Unabhängige Reflexe		2361	7326	4138
		[R(int) = 0,1608]	[R(int) = 0,1146]	[R(int) = 0.0847]
Vollst. Zu $\theta \approx 25^{\circ}$		54,6 %*	99,4 %	99,7 %
Max. & min. Transm.		0,8767-0,8493	0,9422-0,8639	0,9367-0,8518
Daten / Beschränkungen / Parameter		2361 / 175 / 248	7326 / 0 / 570	4138 / 0 / 238
Goodness-of-fit an F ²		1,438	1,041	1,046
Endgültige R-Werte		R1 = 0,1139	R1 = 0,0653	R1 = 0,0451
$[I > 2\sigma(I)]$		wR2 = 0,3173	wR2 = 0,1826	wR2 = 0,01211
<i>R</i> -Werte		R1 = 0,1224	R1 = 0,0817	R1 = 0,0470
(sämtlicher Daten)		wR2 = 0,3379	wR2 = 0,2037	wR2 = 0,1235

Tab. 4. Strrukturdaten der Verbindungen 7, 11 und 17.

* Aufgrund mangelnder Kristallqualität wird 7 nicht in CCDC publiziert.

des Fluoratoms im Vergleich zur N3-Si2-Bindung um 6,3 pm kürzer.

Experimenteller Teil

Die Reaktionen wurden in Inertgasatmosphäre durchgeführt. Die Reinheit der dargestellten Verbindungen wurde gaschromatographisch und/oder kernresonanzspektroskopisch überprüft. Massenspektren: Finnigan MAT 8200 bzw. 950 Spektrometer. ¹H-, ¹³C-, ²⁹Si-NMR-Spektren: 5 – 20-proz. Lösungen in CDCl₃ oder C₆D₆, TMS int., Bruker Avance 500 oder 300 Spektrometer. ¹⁹F-NMR-Spektren: 5proz. Lösungen in CDCl₃, Bruker Avance 200 Spektrometer, C₆F₆ int.

2-[3,3-Dimethyl-1-(trimethylsilyl)butan-2-yliden)-1-(3,3dimethylbutan-2-yliden]hydrazin (1)

In 300 ml *n*-Hexan werden 0,1 mol (19,6 g) Di(*tert*-butylmethyl)ketazin gelöst und bei 0 °C mit 0,1 mol (27,8 g) *n*-Butyllithium (23-proz. in *n*-Hexan) versetzt. Das Reaktionsgemisch wird langsam zum Sieden erhitzt. Nach 4 h werden bei R. T. 0,11 mol (10,8 g) Chlortrimethylsilan hinzugegeben und weitere 2 h unter Rückfluss erhitzt. LiCl wird über eine Fritte abgetrennt. Durch fraktionierte Destillation bei vermindertem Druck (*ca.* 1 mbar) wird **1** rein erhalten.

NMR (CDCl₃/TMS), ¹H: 0,03 Si(CH₃)₃, (9 H), 1,14 C(CH₃)₃, (18 H), 1,78 CH₃, (3 H), 1,91 CH₂, (2 H). ¹³C: 0,5 Si(CH₃)₃, 13,0 CH₃, 18,9 CH₂, 27,9 C(CH₃)₃, 28,6 C(CH₃)₃, 38,3 C(CH₃)₃, 38,5 C(CH₃)₃, 167,4 CNCH₃, 170,1 CNCH₂. ²⁹Si: 0,9 Si(CH₃)₃.

Verbindungen 2, 3, 4, 5

Zu 0,1 mol (19,6 g) Di(*tert*-butyl-methyl)ketazin in 200 ml *n*-Hexan wird bei 0 °C die äquimolare Menge (42,7 g) *n*-Butyllithium (15-proz. in *n*-Hexan) gegeben. Anschließend wird die Aufschlämmung 4 h zum Sie-

den erhitzt und nach dem Abkühlen in einen Tropftrichter überführt. 0,11 mol Chlorsilan (**2**: 14,2 g Me₂SiCl₂; **3**: 21,0 g PhMeSiCl₂; **4**: 23,3 g PhSiCl₃; **5**: 18,7 g SiCl₄) in 50 ml Hexan werden auf -60 °C gekühlt und das lithiierte Ketazin langsam zugetropft. Das Reaktionsgemisch wird über Nacht auf R. T. gebracht und 2 h zum Sieden erhitzt. Das Rohprodukt wird vom LiCl im Vakuum abgetrennt. Durch fraktionierte Destillation erhält man die Verbindungen **2**, **3**, **4** und **5** rein.

2-[1-(Chlordimethylsilyl)-3,3-dimethylbutan-2-yliden]-1-(3,3-dimethylbutan-2-yliden)hydrazin (**2**)

 $C_{14}H_{29}ClN_2Si$ (288,93): Ausbeute: 3,5 g, (12 %). Kp.: 63 °C/1 mbar. MS (E. I.): m/z (%) = 288 (3) [M]⁺, 273 (4) [M-Me]⁺.

NMR (CDCl₃/TMS), ¹H: 0,47 Si(CH_3)₂ (6 H), 1,15 C(CH_3)₃ (9 H), 1,18 C(CH_3)₃ (9 H), 1,82 C H_3 (3 H), 2,25 C H_2 (2 H). ¹³C: 3,5 Si(CH_3)₂, 13,2 C H_3 , 21,8 C H_2 , 27,9 C(CH_3)₃, 28,3 C(CH_3)₃, 38,5 C(CH_3)₃, 38,7 C(CH_3)₃, 168,4 CN, 169,4 CN. ²⁹Si: 28,7 SiCl.

2-{1-[Chlor(methyl)(phenyl)silyl]-3,3-dimethylbutan-2-yliden}-1-(3,3-dimethylbutan-2-yliden)hydrazine (**3**)

 $C_{19}H_{31}ClN_2Si$ (351,00): Ausbeute: 23,8 g (68 %). Kp.: 108 °C/0,01 mbar. MS (E.I.): m/z (%) = 350 (10) [M]⁺, 335 (8) [M-Me]⁺, 293 (42) [M-t-Bu]⁺.

NMR (CDCl₃/TMS), ¹H: 0,73 SiCH₃ (3 H), 1,03 C(CH₃)₃ (9 H), 1,17 C(CH₃)₃ (9 H), 1,81 CH₃ (3 H), 2,50 CH₂ A (d, ²J_{HaHb} = 12,6 Hz, 1 H), 2,60 CH₂ B (²J_{HbHa} = 12,6 Hz, 1 H), 7,3-7,7 C₆H₅ (m, 5 H). ¹³C: 1,6 SiCH₃, 13,3 CH₃, 20,7 CH₂, 27,7 C(CH₃)₃, 28,5 C(CH₃)₃, 38,5 C(CH₃)₃, 38,5 C(CH₃)₃, 128,0 Ph (C3/5), 130,3 Ph (C4), 133,3 Ph (C2/6), 136,0 Ph (C1), 167,7 CN, 169,3 CN. ²⁹Si: 16,4 PhMeS*i*Cl.

2-{1-[Dichlor(phenyl)silyl]-3,3-dimethylbutan-2-yliden}-1-(3,3-dimethylbutan-2-yliden)hydrazin (**4**)

 $C_{18}H_{28}Cl_2N_2Si$ (371,42): Ausbeute: 13,4 g (36 %). Kp.: 108 °C/0,01 mbar. MS (E.I.): *m*/*z* (%) = 370 (8) [M]⁺, 313 (18) [M-*t*-Bu]⁺.

NMR (C_6D_6 /TMS), ¹H: 1,02 C(CH₃)₃ (9 H), 1,17 C(CH₃)₃ (9 H), 1,85 CH₃ (3 H), 2,97 CH₂ (2 H), 7,1-7,8 C₆H₅ (5 H). ¹³C: 13,8 CH₃, 23,5 CH₂, 27,8 C(CH₃)₃, 28,5 C(CH₃)₃, 38,8 C(CH₃)₃, 128,4 Ph (C3/5), 131,6 Ph (C4), 133,8 Ph (C2/6), 133,8 Ph (C1), 166,7 CN, 171,5 CN. ²⁹Si: 12,3 PhSiCl₂.

1-(Trichlorsilyl)-Derivat (5)

 $C_{12}H_{23}Cl_3N_2Si$ (329,77): Ausbeute: 10,8 g (33 %). Kp.: 98 °C/1,9 mbar. MS (E.I.): m/z (%) = 330 (4) [M]⁺, 315 (5) [M-Me]⁺.

NMR (CDCl₃/TMS), ¹H: 1,19 C(C H_3)₃ (9 H), 1,23 C(C H_3)₃ (9 H), 1,92 C H_3 (3 H), 3,03 C H_2 (2 H). ¹³C: 13,9

CH₃, 27,0 CH₂, 27,7 C(CH₃)₃, 28,1 C(CH₃)₃, 38,6 C(CH₃)₃, 38,9 C(CH₃)₃, 165,2 CN, 172,5 CN. ²⁹Si: 5,5 SiCl₃.

Verbindungen 6,7

In 200 ml *n*-Hexan werden 0,1 mol (19,6 g) Di(*tert*butyl-methyl)ketazin gelöst und mit 0,1 mol (42,7 g) *n*-Butyllithium (15-proz. in *n*-Hexan) während 2 h in der Siedehitze metalliert. Das Monolithiumsalz wird bei R. T. zu 0,1 mol (15,4 g) Fluordimethylphenylsilan (**6**) in 50 ml Hexan (-60 °C) bzw. zu 0,11 mol (25,2 g) *N*-(Trifluorsilyl)-2-methyl-*N*-(trimethylsilyl)propan-2-amin in 50 ml THF (-60 °C) hinzugetropft. Die Lösung wird über Nacht auf R. T. erwärmt und für 8 h zum Sieden erhitzt. Die Trennung vom LiF erfolgt durch Umkondensation und die folgende Aufreinigung durch Destillation im Vakuum **7** wird in *n*-Hexan umkristallisiert.

1-[Dimethyl(phenyl)silyl]-Derivat (6)

 $C_{20}H_{34}N_2Si$ (330,58): Ausbeute: 17,8 g (54 %). Kp.: 103 °C/0,01 mbar. MS (E.I.): m/z (%) = 330 (14) [M]⁺, 315 (38) [M-Me]⁺, 273 (50) [M-t-Bu]⁺.

NMR (CDCl₃/TMS), ¹H: 0,33 Si(CH₃)₂ (6 H), 1,07 C(CH₃)₃ (9 H), 1,10 C(CH₃)₃ (9 H), 1,79 CH₃ (3 H), 2,19 CH₂ (2 H), 7,3-7,5 C₆H₅ (5 H). ¹³C: -1,1 Si(CH₃)₂, 13,0 CH₃, 18,2 CH₂, 27,8 C(CH₃)₃, 28,6 C(CH₃)₃, 38,3 C(CH₃)₃, 38,5 C(CH₃)₃, 127,7 Ph (C3/5), 128,9 Ph (C4), 133,5 Ph (C2/6), 139,9 Ph (C1), 167,6 CN, 169,5 CN, ²J_{13C29Si} = 3,9 Hz. ²⁹Si: -4,6 Si(CH₃)₂Ph.

[tert-Butyl(trimethylsilyl)amino]difluorsilyl-Derivat (7)

 $C_{19}H_{41}F_2N_3Si_2(405,72)$: Ausbeute: 16,2 g (40 %). Kp.: 110 °C/0,02 mbar. MS (E.I.): m/z (%) = 405 (4) [M]⁺, 390 (6) [M-Me]⁺.

NMR (C₆D₆/TMS), ¹H: 0,24 NSi(CH₃)₃ (t, ⁵J_{HF} = 1,1 Hz, 9 H), 1,14 CC(CH₃)₃ (9 H), 1,18 CC(CH₃)₃ (9 H), 1,35 NC(CH₃)₃ (9 H), 1,77 CH₃ (3H), 2,23 CH₂ (m, AA'XX', 1 H). ¹³C: 4,8 NSi(CH₃)₃ (t, ⁴J_{CF} = 2,4 Hz), 12,7 CH₃ (t, ⁷J_{CF} = 1,2 Hz), 18,7 CH₂ (t, ²J_{CF} = 24,0 Hz), 27,1 CC(CH₃)₃, 28,2 CC(CH₃)₃, 33,3 NC(CH₃)₃ (t, ⁴J_{CF} = 2,3 Hz), 38,0 CC(CH₃)₃, 38,1 CC(CH₃)₃, 53,9 NC(CH₃)₃ (t, ³J_{CF} = 0,8 Hz), 164,1 C=N (t, ³J_{CF} = 0,5 Hz), 168,0 C=N. ¹⁹F (C₆F₆): 45,2 SiF₂N (m, AA'XX'). ²⁹Si: -40,2 SiF₂N (t, ¹J_{SiF} = 283 Hz), 3,0 NSi(CH₃)₃ (t, ³J_{SiF} = 1,3 Hz).

Verbindungen 8,9

0,1 mol (19,6 g) Di(*tert*-butyl-methyl)ketazin für Verbindung **8** bzw. 0,1 mol (26,8 g) von Verbindung **1** werden mit 0,1 mol (27,8 g) *n*-Butyllithium (23-proz. in *n*-Hexan) in 200 ml *n*-Hexan bei 0 °C lithiiert. 0,06 mol (7,7 g) Me₂SiCl₂ werden zu der warmen Reaktionslösung hinzugegeben, die für weitere 5 h auf Siedetemperatur erhitzt wird. Durch Zentrifugieren trennt man das LiCl von der überstehenden Lösung. Die Lösung wird eingeengt und 8 und 9 fraktioniert destilliert.

Bis{2-[2-(3,3-dimethylbutan-2-yliden)hydrazono]-3,3dimethylbut-1-yl}-dimethylsilan (**8**)

NMR (CDCl₃/TMS), ¹H: 0,06 Si(CH_3)₂ (6 H), 1,14 C(CH_3)₃ (18 H), 1,15 C(CH_3)₃ (18 H), 1,80 C H_3 (6 H), 2,04 C H_2 (4 H). ¹³C: 0,1 Si(CH_3)₂, 13,1 C H_3 , 20,7 C H_2 , 28,0 C(CH_3)₃, 28,6 C(CH_3)₃, 38,5 C(CH_3)₃, 38,6 C(CH_3)₃, 168,1 CN, 170,1 CN. ²⁹Si: 0,6 Si(CH_3)₂.

Bis(trimethylsilyl)-Derivat (9)

 $C_{32}H_{68}N_4Si_3$ (593,17): Ausbeute: 16,6 g (28 %). Kp.: 173 °C/0,07 mbar. MS (E.I.): m/z (%) = 577 (1) [M-Me]^+.

NMR (CDCl₃/TMS). ¹H: 0,05 Si(CH_{3})₂ (6 H), 0,05 Si(CH_{3})₃ (18 H), 1,14 C(CH_{3})₃ (18 H), 1,15 C(CH_{3})₃ (18 H), 2,03 CH₂SiMe₃ (4 H), 2,16 CH₂SiMe₂ (4 H). ¹³C: 0,7 Si(CH_{3})₂, 1,1 Si(CH_{3})₃, 20,2 CH₂ A, 22,1 CH₂ B, 29,3 C(CH_{3})₃, 29,4 C(CH_{3})₃, 38,9 C(CH_{3})₃, 39,0 C(CH_{3})₃ 172,8 CN, 173,3 CN. ²⁹Si: 0,7 Si(CH_{3})₂, 1,1 Si(CH_{3})₃.

1-{3,3-Dimethyl-1-[dimethyl(phenyl)silyl]butan-2-yliden}-2-(3,3-dimethyl-1-[trimethylsilyl]butan-2-yliden)hydrazin (10)

0,1 mol (26,8 g) von **1** werden in 200 ml *n*-Hexan gelöst und mit der äquimolaren Menge (27,8 g) *n*-Butyllithium (23proz. in *n*-Hexan) zur Reaktion gebracht. Nach 3 h Sieden unter Rückfluss wird auf -60 °C abgekühlt und 0,1 mol (15,4 g) Fluordimethylphenylsilan in 50 ml Hexan hinzugegeben. Das Gemisch wird 6 h auf R. T. erwärmt und 8 h unter Rückfluss erhitzt. Nach Abtrennen des Lithiumfluorids im Vakuum erhält man **10** durch Destillation im Vakuum.

NMR (CDCl₃/TMS), ¹H: 0,09 Si(*CH*₃)₃ (9 H), 0,35 Si(*CH*₃)₂ (6 H), 1,08 C(*CH*₃)₃ (9 H), 1,13 C(*CH*₃)₃ (9 H), 2,06 *CH*₂ (2 H), 2,31 PhSiC*H*₂ (2 H), 7,3 – 7,5 C₆*H*₅ (m, 5 H). ¹³C: -1,0 Si(*CH*₃)₂, 0,7 Si(*CH*₃)₃, 18,8 PhSiC*H*₂, 19,7 *CH*₂, 28,8 C(*CH*₃)₃, 28,9 C(*CH*₃)₃, 38,4 C(*CH*₃)₃, 127,7 Ph (*C*3/5), 128,7 Ph (*C*4), 133,5 Ph (*C*2/6), 140,5 Ph (*C*1), 171,9 *C*N, 172,8 *C*N. ²⁹Si: -4,4 PhSi(*CH*₃)₂, 1,2 Si(*CH*₃)₃.

Verbindungen 11, 13-17

0,1 mol (19,6 g) Di(*tert*-butyl-methyl)ketazin in 250 ml *n*-Hexan werden mit 0,2 mol (55,6 g) *n*-Butyllithium (23-proz. in *n*-Hexan) dilithiiert. Nach 4 h unter Sieden wird das Reaktionsgemisch auf -60 °C gekühlt und zu 0,11 mol ebenfalls auf -60 °C gekühltem Fluorsilan getropft (**11**: 33,4 g;

13: 16,7 g (*i*-Pr)₂SiF₂; **14**: 21,0 g Cl₂SiMePh in THF; **15**: 22,0 g Pht-BuSiF₂; **16**: 15,6 g t-BuSiF₃; **17**: 25,2 g Me₃Si(t-Bu)NSiF₃). Die Reaktionslösung wird über Nacht auf R. T. gebracht und danach 1 h auf Siedetemperatur erhitzt. Entstandenes LiHal wird durch Umkondensieren im Vakuum (*ca.* 0,01 mbar) abgetrennt und die Verbindungen durch fraktionierte Destillation gereinigt. **11** kristallisierte in der Vorlage aus. Röntgentaugliche Kristalle von **17** konnten durch Umkristallisation aus *n*-Hexan erhalten werden.

1,2-Bis(*1-(fluordiisopropylsilyl)-3,3-dimethylbutan-2-yliden)hyd razin* (**11**)

 $C_{24}H_{50}F_2N_2Si_2$ (460,8): Ausbeute: 11,5 g (25 %). Kp.: 82 °C/0,01 mbar. MS (E.I.): m/z (%) = 460 (58) [M]⁺, 445 (9) [M-Me]⁺.

NMR (CDCl₃/TMS), ¹H: 1,00 SiCH(CH₃)₂ (d, ³J_{HaHb} = 7,4 Hz, 12 H), 1,03 SiCH(CH₃)₂ (d, ³J_{HbHa} = 7,3 Hz, 12 H), 1,13 SiCH(CH₃)₂ (m, 4 H), 1,18 C(CH₃)₃ (18 H), 2,21 CH₂ (d, ³J_{HF} = 9,2 Hz, 4 H). ¹³C: 13,3 SiCH(CH₃)₂ (d, ²J_{CF} = 13,4 Hz), 15,6 CH₂ (d, ²J_{CF} = 13,1 Hz), 17,0 SiCH(CH₃)₂ (d, ³J_{CaF} = 1,9 Hz), 17,0 SiCH(CH₃)₂ (d, ³J_{CaF} = 1,9 Hz), 17,0 SiCH(CH₃)₂ (d, ³J_{CaF} = 1,0 Hz), 28,8 C(CH₃)₃, 38,9 C(CH₃)₃, 173,1 CN. ¹⁹F: -10,6 SiF. ²⁹Si: 24,9 SiF (d, ¹J_{SiF} = 303 Hz).

Tris{2-[2-(3,3-dimethylbutan-2-yliden)hydrazono]-3,3dimethylbut-1-yl}-fluorsilan (**12**)

0,2 mol (39,2 g) Di(*tert*-butyl-methyl)ketazin werden in 250 ml *n*-Hexan aufgenommen und mit 0,2 mol (85,4 g) *n*-Butyllithium (15-proz. in *n*-Hexan) versetzt. Danach wird 3 h zum Sieden erhitzt, das Reaktionsgemisch anschließend auf -70 °C gekühlt und 0,1 mol (10,4 g) Tetrafluorsilan eingeleitet. Das Gemisch wird über Nacht auf R. T. erwärmt und durch Zentrifugieren vom Lithiumfluorid abgetrennt. Die Lösung wird eingeengt und die Verbindung **12** durch fraktionierte Destillation gereinigt.

 $C_{36}H_{69}FN_6Si$ (633): Ausbeute: 6,3 g (5 %). Kp.: 124 °C/0,04 mbar. MS (E.I.): m/z (%) = 555 (10) [M-NC(Me)(CMe₃), -HF]⁺.

NMR (CDCl₃/TMS), ¹H: 1,13 C(CH₃)₃ (s, 27 H), 1,14 C(CH₃)₃ (d, ⁶J_{HF} = 0,4 Hz, 27 H), 1,78 CH₃ (s, 9 H), 2,22 CH₂ (d, ³J_{HF} = 7,8 Hz, 6 H). ¹³C: 13,3 CH₃, 19,9 CH₂ (d, ²J_{CF} = 13,7 Hz), 28,0 C(CH₃)₃, 28,8 C(CH₃)₃ (d, ⁵J_{CF} = 1,8 Hz), 38,7 C(CH₃)₃, 38,9 C(CH₃)₃, 167,6 C=N (d, ³J_{CF} = 0,7 Hz), 169,1 C=N. ¹⁹F: 19,4 SiF (sept., ³J_{FH} = 7,8 Hz). ²⁹Si: 14,9 SiF (d, ¹J_{SiF} = 308 Hz).

5-tert-Butyl-3,4-dihydro-3,3-diisopropyl-2-(3,3-dimethylbut-1-en-2-yl)-2H-1,2,3-diazasilol (13)

 $C_{18}H_{36}N_2Si$ (308): Ausbeute:13,2 g (43 %). Kp.: 70 °C/0,01 mbar. MS (E.I.) m/z (%) = 308 (70) [M]⁺, 293 (15) [M-Me]⁺.

NMR (CDCl₃/TMS), ¹H: 0,98 SiCH(CH₃)₂ (d, ³ $J_{HH} =$ 7,4 Hz, 6 H), 1,00 SiCH(CH₃)₂ (d, ³ $J_{HH} =$ 7,4 Hz, 6 H), 1,12

 $\begin{array}{l} {\rm C}({\rm C}{\rm H}_3)_3 \ (9{\rm H}), \ 1,24 \ {\rm C}({\rm C}{\rm H}_3)_3 \ (9 \ {\rm H}), \ 1,31 \ {\rm Si}{\rm C}{\rm H}({\rm C}{\rm H}_3)_2 \ ({\rm sept}, \ {}^3{\rm J}_{\rm H\rm H} = 7,4 \ {\rm Hz}, \ 1 \ {\rm H}), \ 1,32 \ {\rm Si}{\rm C}{\rm H}({\rm C}{\rm H}_3)_2 \ ({\rm sept}, \ {}^3{\rm J}_{\rm H\rm H} = 7,4 \ {\rm Hz}, \ 1 \ {\rm H}), \ 1,32 \ {\rm Si}{\rm C}{\rm H}({\rm C}{\rm H}_3)_2 \ ({\rm sept}, \ {}^3{\rm J}_{\rm H\rm H} = 7,4 \ {\rm Hz}, \ 1 \ {\rm H}), \ 1,45 \ {\rm C}{\rm H}_2 \ (2{\rm H}), \ 3,80 = {\rm C}{\rm H}_2 \ ({\rm d}, \ {}^2{\rm J}_{\rm Ha\rm Hb} = 0,8 \ {\rm Hz}, \ 1 \ {\rm H}), \ 3,87 = {\rm C}{\rm H}_2 \ {\rm b} \ ({\rm d}, \ {}^2{\rm J}_{\rm Hb\rm Ha} = 0,8 \ {\rm Hz}, \ 1 \ {\rm H}), \ {}^{13}{\rm C}: 9,1 \ {\rm C}{\rm H}_2, \ 12,5 \ {\rm Si}{\rm C}{\rm H}({\rm C}{\rm H}_3)_2, \ 17,8 \ {\rm Si}{\rm C}{\rm H}({\rm C}{\rm H}_3)_2, \ 28,6 \ {\rm C}({\rm C}{\rm H}_3)_3, \ 29,9 \ {\rm C}({\rm C}{\rm H}_3)_3, \ 36,6 \ {\rm C}({\rm C}{\rm H}_3)_3, \ 36,8 \ {\rm C}({\rm C}{\rm H}_3)_3, \ 82,7 \ = {\rm C}{\rm H}_2, \ 155,9 \ {\rm C}{\rm N}, \ 161,1 \ {\rm CN}. \ {}^{29}{\rm Si}: \ 26,9 \ {\rm Si}({\rm C}{\rm H}({\rm C}{\rm H}_3)_2)_2. \end{array}$

5-tert-Butyl-3,4-dihydro-3-methyl-2-(3,3-dimethylbut-1-en-2-yl)-3-phenyl-2H-1,2,3-diazasilol (14)

C₁₉H₃₀N₂Si (314,5): Ausbeute: 20,7 g (66 %). Kp.: 79 °C/0,01 mbar. MS (E.I.) m/z (%) = 314 (100) [M]⁺, 299 (43) [M-Me]⁺.

NMR (CDCl₃/TMS), ¹H: 0,69 SiCH₃ (3 H), 1,18 C(CH₃)₃ (9 H), 1,23 C(CH₃)₃ (9 H), 1,73 CH₂ (d, ²J_{HaHb} = 19,1 Hz, 1 H), 1,79 CH₂ (d, ²J_{HbHa} = 19,1 Hz, 1 H), 3,89 =CH₂ (d, ²J_{HaHb} = 0,4 Hz, 1 H), 3,95 =CH₂ (d, ²J_{HbHa} = 0,4 Hz, 1 H), 7,3 – 7,6 C₆H₅ (m, 5 H). ¹³C: -4,1 SiCH₃, 16,6 CH₂, 28,6 C(CH₃)₃, 29,8 C(CH₃)₃, 36,6 C(CH₃)₃, 36,9 C(CH₃)₃, 87,4 =CH₂, 128,0 Ph (C3/5), 130,0 Ph (C4), 133,8 Ph (C2/6), 135,9 Ph (C1), 157,6 CN, 159,7 CN. ²⁹Si: 9,1 *Si*PhCH₃.

3,5-Di-tert-butyl-3,4-dihydro-2-(3,3-dimethylbut-1-en-2-yl)-3-phenyl-2H-1,2,3-diazasilol (15)

 $C_{22}H_{36}N_2Si$ (356,6): Ausbeute: 21,7 g (61 %). Kp.: 117 °C/0,05 mbar. MS (E.I.) m/z (%) = 356 (34) [M]⁺, 341 (8) [M-Me]⁺, 279 (12) [M-Ph]⁺.

NMR (CDCl₃/TMS), ¹H: 1,15 CC(CH₃)₃ (9 H), 1,16 SiC(CH₃)₃ (9 H), 1,27 CC(CH₃)₃ (9 H), 1,67 CH₂ (d, ²J_{HaHb} = 19,0 Hz, 1 H), 1,81 CH₂ (d, ²J_{HbHa} = 19,0 Hz, 1 H), 3,98 =CH₂ (d, ²J_{HaHb} = 0,7 Hz, 1 H), 4,00 =CH₂ (d, ²J_{HbHa} = 0,7 Hz, 1 H), 7,3 – 7,7 C₆H₅ (m, 5 H). ¹³C: 14,9 CH₂, 19,8 SiC(CH₃)₃, 27.9 SiC(CH₃)₃, 28,6 CC(CH₃)₃, 30,1 CC(CH₃)₃, 36,6 CC(CH₃)₃, 37,1 CC(CH₃)₃, 87,8 =CH₂, 128,0 Ph (C3/5), 129,7 Ph (C4), 134,6 Ph (C2/6), 134,6 Ph (C1), 156,7 CN, 160,5 CN. ²⁹Si: 12,7.

3,5-Di-tert-butyl-3-fluor-3,4-dihydro-2-(3,3-dimethylbut-1en-2-yl)-2H-1,2,3-diazasilol (16)

C₁₆H₃₁FN₂Si (298,5): Ausbeute: 18,7 g (63 %). Kp.: 58 °C/0,02 mbar. MS (E.I.) m/z (%) = 298 (27) [M]⁺, 283 (9) [M-Me]⁺, 57 (100) [t-Bu]⁺.

NMR (CDCl₃/TMS), ¹H: 1,04 SiC(CH₃)₃ (d, ⁴J_{HF} = 1,0 Hz, 9 H), 1,12 CC(CH₃)₃ (9 H), 1,23 CC(CH₃)₃ (9 H), 1,49 CH₂ (ABX, ²J_{HaHb} = 19,5 Hz, ³J_{HaF} = 17,1 Hz, 1 H),

1,59 CH₂ (ABX, ²J_{HbHa} = 19,5 Hz, ³J_{HbF} = 6,0 Hz, 1 H), 4,31 =CH₂ (ABX, ²J_{HaHb} = 0,3 Hz, 1 H), 4,51 =CH₂ (ABX, ²J_{HbHa} = 0,3 Hz, 1 H). ¹³C: 10,7 CH₂ (d, ²J_{CF} = 14,8 Hz), 18,6 SiC(CH₃)₃ (d, ²J_{CF} = 20,1 Hz), 26,8 SiC(CH₃)₃, 28,5 CC(CH₃)₃, 30,2 CC(CH₃)₃, 36,8 CC(CH₃)₃, 36,9 CC(CH₃)₃ (d, ⁴J_{CF} = 2,8 Hz), 93,1 =CH₂, 156,8 CN (d, ³J_{CF} = 1,8 Hz), 159,4 CN (d, ³J_{CF} = 3,0 Hz). ¹⁹F (C₆F₆): 16,2 SiFC(CH₃)₃ (ABX, ³J_{FHa} = 17,1 Hz, ³J_{FHb} = 6,0 Hz). ²⁹Si: 11,9 SiFC(CH₃)₃ (d, ¹J_{SiF} = 339 Hz).

N-[5-tert-Butyl-3-fluor-3,4-dihydro-2-(3,3-dimethylbut-1-en-2-yl)-2H-1,2,3-diazasilol-3-yl]-2-methyl-N-(trimethylsilyl)propan-2-amin (17)

 $\begin{array}{ll} C_{19}H_{40}FN_{3}Si_{2} & (385,7): \mbox{ Ausbeute: } 26,2 \ g & (68 \ \%). \\ Kp.: 89 \ ^{\circ}C/0,06 \ mbar. \ MS \ (E.I.): \ \ m/z \ (\%) = 385 \ (12) \ \ [M]^{+}, \\ 370 \ (18) \ \ [M-Me]^{+}, \ 328 \ (60) \ \ [M-t-Bu]^{+}. \end{array}$

NMR (C₆D₆/TMS), ¹H: 0,24 NSi(CH₃)₃ (d, ⁵J_{HF} = 2,0 Hz, 9 H), 1,11 CC(CH₃)₃ (9 H), 1,23 CC(CH₃)₃ (9 H), 1,31 NC(CH₃)₃ (d, ⁵J_{HF} = 0,5 Hz, 9 H), 1,34 CH₂ (ABX, ²J_{HaHb} = 19,6 Hz, ³J_{HaF} = 12,8 Hz, 1 H), 1,43 CH₂ (ABX, ²J_{HaHb} = 19,6 Hz, ³J_{HbF} = 7,0 Hz, 1 H), 4,19 =CH₂ (d, ²J_{HaHb} = 0,5 Hz, 1 H), 4,50 =CH₂ (d, ²J_{HbHa} = 0,5 Hz, 1 H), 4,50 =CH₂ (d, ²J_{HbHa} = 0,5 Hz, 1 H), 1³C: 5,4 NSi(CH₃)₃ (d, ⁴J_{CF} = 4,2 Hz), 14,0 CH₂ (d, ²J_{CF} = 19,9 Hz), 28,4 CC(CH₃)₃, 29,8 CC(CH₃)₃, 3,3,4 NC(CH₃)₃ (d, ⁴J_{CF} = 2,3 Hz), 36,7 CC(CH₃)₃ (d, ⁴J_{CF} = 0,9 Hz), 37,0 CC(CH₃)₃, 54,6 NC(CH₃)₃, 88,5 =CH₂, 155,6 CN (d, ³J_{CF} = 3,3 Hz), 157,9 CN (d, ³J_{CF} = 1,9 Hz). ¹⁹F (C₆F₆): 33,8 SiFN (ABX, ³J_{FHa} = 12,8 Hz, ³J_{FHb} = 7,0 Hz). ²⁹Si: -12,6 SiFN (d, ¹J_{SiF} = 276 Hz), 5,4 NSi(CH₃)₃ (d, ³J_{SiF} = 4,1 Hz).

Die kristallographischen Daten und Angaben zur Strukturanalyse sind in Tab. 4 zusammengefasst und wurden als "supplementary publications" **11**: CCDC 284737, **17**: CCDC 284738 beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse in Großbritannien angefordert werden: CCDC, 12 Union Road, Cambridge CB21EZ (Fax: (+44)1223-336-033; Email: deposit@ccdc.cam.ac.uk).

Die Datensammlungen wurden auf einem STOE-SIEMENS-Vierkreisdiffraktometer bei graphitmonochromatisierter Mo-K_{α}-Strahlung ($\lambda = 71,069$ pm) durchgeführt. Die Strukturen wurden durch Direktmethoden gelöst und nach dem Kleinste-Quadrate-Verfahren gegen F^2 verfeinert. Für die Strukturlösung, -verfeinerung und -darstellung wurde das Programm SHELX-96 verwendet [18]. Die kristallographischen Daten und Angaben zur Strukturanalyse sind in Tab. 1 zusammengefasst.

[2] Houben-Weyl, Methoden der organischen Chemie. Stickstoffverbindungen I. Teil 2. Bd. 10/2. S. 89, Georg Thieme Verlag, Stuttgart, New York (1976).

Houben-Weyl, Methoden der organischen Chemie. Organische Stickstoffverbindungen mit einer C, N-Doppelbindung. Teil 2. Bd. E14b. S. 640, Georg Thieme Verlag, Stuttgart, New York (1990).

- [3] K. Knipping, C. Drost, U. Klingebiel, M. Noltemeyer, Z. Anorg. Allg. Chem. 622, 1215 (1996).
- [4] A. Schmidpeter, K. Karaghiosoff, Heterophospholes. in M. Regitz, O. J. Scherer (eds): Multiple Bonds and Low Coordination in Phosphorus Chemistry. Georg Thieme Verlag, Stuttgart, New York (1990).
- [5] A. Schmidpeter, Heterophospholes, in F. Mathey (ed.): Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a New Domain, Pergamon, Amsterdam, New York (2001).
- [6] M. Hesse, U. Klingebiel, Z. Anorg. Allg. Chem. 501, 57 (1983).
- [7] W. Clegg, U. Klingebiel, G. M. Sheldrick, P. Werner, Angew. Chem. 93, 391 (1981); Angew. Chem. Int. Ed. Engl. 384, 20 (1981).
- [8] W. Clegg, O. Graalmann, M. Haase, U. Klingebiel, G. M. Sheldrick, P. Werner, G. Henkel, B. Krebs, Chem. Ber. 116, 282 (1983).
- [9] W. Clegg, U. Klingebiel, U. Pohlmann, G. M. Sheldrick, P. Werner, Angew. Chem. **93**, 390 (1981); Angew. Chem. Int. Ed. Engl. **20**, 383 (1981).
- [10] W. Clegg, M. Haase, M. Hesse, U. Klingebiel, G.M.

Sheldrick, Angew. Chem. **94**, 461 (1982); Angew. Chem Int. Ed. Engl. **21**, 445 (1982); Angew. Chem. Suppl. 1009 (1982).

- [11] O. Graalmann, M. Hesse, U. Klingebiel, W. Clegg, M. Haase, G. M. Sheldrick, Angew. Chem. Suppl. 874 (1983).
- [12] T. Groh, G. Elter, M. Noltemeyer, H.-G. Schmidt, A. Meller, Main Group Met. Chem. No. 11, 23, 709 (2000).
- [13] T. Groh, G. Elter, M. Noltemeyer, H.-G. Schmidt, A. Meller, Organometallics 19, 2477 (2000).
- [14] E. Lederer, Bull. Soc. Chim. Fr. 172 (1946).
- [15] E. Arnal, J. Elguero, R. Jacquier, C. Marzin, J. Wylde, Bull. Soc. Chim. Fr. 877 (1967).
- [16] K. Appenroth, M. Reichenbaecher, R. Paetzold, Tetrahedron 37, 569 (1981).
- [17] D. S. Malament, J. M. McBride, J. Am. Chem. Soc. 92, 4586 (1970).
- [18] G. M. Sheldrick, Acta Crystallorg., Sect. A, 45, 467 (1990).
- [19] G. M. Sheldrick, SHELXL-96, Universität Göttingen (1996).