Syntheses, Crystal Structures and Magnetic Properties of Rb_2RuO_4 and K_2RuO_4 Dieter Fischer^a, Rudolf Hoppe^b, Kailash M. Mogare^a, and Martin Jansen^a - ^a Stuttgart, Max-Planck-Institut f ür Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany - b Institut für Anorganische und Analytische Chemie, Heinrich-Buff-Ring 58, D-35392 Gießen, Germany Reprint requests to Prof. Dr. Martin Jansen. Fax: +49-711/6891502. E-mail: m.jansen@fkf.mpg.de Z. Naturforsch. 60b, 1113-1117 (2005); received August 23, 2005 Potassium and rubidium oxoruthenates, A_2RuO_4 , were synthesized from the alkali peroxides/hyperoxides and ruthenium dioxide. Both compounds crystallize in the orthorhombic space group Pnma (no. 62), (K_2RuO_4 : a=7.673(2), b=6.153(2) and c=10.564(3) Å, Z=4, 796 unique reflections, R=3.5%; Rb_2RuO_4 : a=8.106(2), b=6.270(1) and c=11.039(2) Å, Z=4, 889 unique reflections, R=3.6%). The crystal structures, as determined from single crystal data, are of the β - K_2SO_4 type. Magnetic measurements reveal that both compounds are paramagnetic down to temperatures of around 60 K and further exhibit antiferromagnetic transitions, at around $T_N=9$ K for Rb_2RuO_4 , and two transitions with $T_N=14$ K and 4 K for K_2RuO_4 . The magnetic moments as determined applying Curie-Weiss law for both compounds are $2.68~\mu_B$, thus confirming the oxidation state +6 of ruthenium. Key words: Potassium and Rubidium Oxoruthenates, Ruthenium, Crystal Structure, Magnetic Properties #### Introduction Ruthenates crystallize in a rich variety of structure types ranging from pyrochlores and hollandites to perovskite type phases, and exhibiting interesting magnetic and electronic properties. However, only a few alkali oxoruthenates of the type A2RuO4 (where A = alkali metal) were explored up to now. More than a decade ago we reported the crystal structure of Cs₂RuO₄ [1], and last year, including us, two groups reported the crystal structure and magnetic properties of Na₂RuO₄ [2,3]. Recently, many compounds of ruthenium have been studied which exhibit interesting electronic properties, especially due to the unusual behaviour of electrons in these ruthenium based oxides in which the local magnetic moment character for ruthenium is lost due to the hybridization of the Ru 4d and O 2p states [4]. Na₂RuO₄ displays antiferromagnetic behaviour at around 35 K with the ruthenium atom five-fold coordinated by oxygen atoms forming ladders of trigonal bipyramids [3]. K₂RuO₄ and Rb₂RuO₄, however, are similar to Cs₂RuO₄, containing isolated RuO₄ tetrahedra and crystallising in the β -K₂SO₄ type of structure [5]. Here we report on the syntheses, crystal structure and magnetic properties of K_2RuO_4 and Rb_2RuO_4 . #### **Experimental Section** Syntheses K_2RuO_4 was synthesised from potassium peroxide and ruthenium dioxide in the molar ratio 2:1 at $780\,^{\circ}\text{C}$ in a platinum crucible kept in a quartz ampoule for 45 days, and also by heating the mixture at $720\,^{\circ}\text{C}$ in a silver container sealed in a quartz ampoule for 46 days. Rb_2RuO_4 was synthesised from $RbO_{1.6}$ and ruthenium dioxide in the molar ratio 2.1:1 at $650\,^{\circ}\text{C}$ (platinum crucible, sealed in supremax glass ampoule) for 62 days. The crystals obtained are dark green and blackish in colour. Both compounds are hygroscopic [5]. Single crystals suitable for X-ray diffraction studies were selected in dry paraffin oil and sealed into glass capillaries. The polycrystalline samples on which the magnetic measurements were carried out were synthesised under similar conditions from KO_2 and RuO_2 in the molar ratio $2\colon 1$ for K_2RuO_4 and from RbO_2 and RuO_2 in the molar ratio $2\colon 1$ for Rb_2RuO_4 . These mixtures were placed in gold ampoules which were flame sealed at one end and mechanically closed at the other. The reactions were carried out under an oxygen flow at 625 °C for 2 days and subsequent cooling to room temperature at a rate of 20 °C per hour. 0932-0776 / 05 / 1100-1113 \$ 06.00 © 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com | Compound | Rb_2RuO_4 | K ₂ RuO ₄ | |--|--|---| | Crystal system | orthorhombic | orthorhombic | | Space group (no.) | <i>Pnma</i> (no. 62) | Pnma (no. 62) | | Lattice parameters | a = 8.106(2) Å | a = 7.673(2) Å | | (Guinier – data) | b = 6.270(1) Å | b = 6.153(2) Å | | | c = 11.039(2) Å | c = 10.564(3) Å | | Formula units (Z) | 4 | 4 | | Cell volume / Å ³ | 561.02 | 498.75 | | X-ray density /g·cm ⁻³ | 4.00 | 3.20 | | Crystal form | columnar, dark green | cuboid, dark green | | F (000) | 600 | 456 | | Diffractometer | four circle Siemens AED 2 | four circle Siemens AED 2 | | Wavelength | Mo- K_{α} , ($\lambda = 0.71073 \text{ Å}$) | Mo-K _α , ($\lambda = 0.71073 \text{ Å}$) | | Monochromator | graphite | graphite | | Intensity correction | Polarisations and Lorentz factor | Polarisations and Lorentz factor | | Linear absorption Coeff., | 194.9 | 42.9 | | μ , Mo-K _{α} , cm ⁻¹ | | | | Data collection mode | Omega-scan, Profile fit | Omega-scan, Profile fit | | | method [9] | method [9] | | Scan region /° | $3^{\circ} < \theta < 30^{\circ}$ | $3^{\circ} < \theta < 30^{\circ}$ | | No. of measured reflections | 6556 | 5875 | | No. of unique reflections | 889 | 796 | | No. of omitted reflections | 6 | 4 | | No. of free parameters | 40 | 40 | | Structure solution | Direct method and Differential | Patterson and Differential | | | Fourier-Synth. | Fourier-Synth. | | Structure refinement | Full matrix least-squares; | Full matrix least-squares; | | | anisotropic displacement parameter | anisotropic displacement parameter | | R(obs) | 3.6 % | 3.5 % | | $R_w(obs)$ | 2.3 % | 2.5 % | | Weighing scheme | $2.3814/\sigma(F_{\rm o})^2$ | $2.0470/\sigma(F_{\rm o})^2$ | Table 1. Crystallographic data and details on the structure determination of Rb_2RuO_4 and K_2RuO_4 [5] at 298 K. | Rb ₂ RuO ₄ | | | | K_2RuO_4 | | | | |----------------------------------|-----------|-----------|-----------|------------|-----------|-----------|-----------| | Atom | x | у | z | Atom | x | у | z | | Ru | 0.2208(1) | 1/4 | 0.4209(1) | Ru | 0.2864(1) | 1/4 | 0.5830(1) | | Rb1 | 0.6619(1) | 1/4 | 0.4166(1) | K1 | 0.3362(1) | 1/4 | 0.9270(1) | | Rb2 | 0.4932(1) | 1/4 | 0.7940(1) | K2 | 0.4932(1) | 1/4 | 0.2895(1) | | O1 | 0.3048(6) | 1/4 | 0.5692(4) | O1 | 0.1736(5) | 1/4 | 0.4402(3) | | O2 | 0.5065(6) | 1/4 | 0.0764(5) | O2 | 0.0039(5) | 1/4 | 0.9440(4) | | O3 | 0.2981(5) | 0.4789(5) | 0.3469(3) | O3 | 0.2782(5) | 0.5236(5) | 0.1684(3) | Table 2. Atomic coordinates of Rb_2RuO_4 and K_2RuO_4 with standard deviations in parentheses. On addition of water or dilute hydrochloric acid, a reaction of the oxoruthenates(VI) takes place, yielding an orange colour in water and a red colour in hydrochloric acid. No further investigation of these products was carried out. #### X-ray diffraction Single crystal data were collected on a four circle Siemens AED 2 diffractometer (Mo- K_{α} radiation). Further information concerning the data collection and processing, the crystallographic parameters, as well as details on the structure solution and refinement are given in Table 1*. Powder pat- terns were refined on the Guinier-Simon data with Cu- $\!K_{\alpha 1}$ radiation. Quartz was used as an internal standard. ## Magnetic measurements The magnetisation was recorded using a SQUID-magnetometer (Quantum Design MPMS; $5-330~\rm K$, magnetic fields up to $5~\rm T$; sample size: $38~\rm mg$ of K_2RuO_4 and $46~\rm mg$ of Rb_2RuO_4 sealed in quartz ampoules under helium). The susceptibility data were corrected for the core diamagnetic contributions. ### **Results and Discussion** Rb₂RuO₄ and K₂RuO₄ crystallize in the β -K₂SO₄ structure [5]. According to single crystal structure analyses [6], in the case of Rb₂RuO₄ the Ru atom is ^{*}Further details of the crystal structure investigation are available from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein Leopoldshafen (Germany), on quoting the depository number CSD-415748 for Rb₂RuO₄ and CSD-415749 for K₂RuO₄, and the name of the author(s), and citation of the paper. Table 3. Anisotropic displacement parameters for Rb₂RuO₄ (in Å²) with standard deviations in parentheses. The U_{ij} are defined as $\exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + U_{12}hka^*b^* + U_{13}hla^*c^* + U_{23}klb^*c^*)]$. | Atom | U_{11} | U_{22} | U_{33} | U_{23} | U_{13} | U_{12} | |------|------------|------------|------------|------------|-------------|------------| | Ru1 | 0.0171(2) | 0.0207(2) | 0.0200(2) | 0 | -0.0005(1) | 0 | | Rb1 | 0.0231(3) | 0.0325(3) | 0.0387(4) | 0 | -0.0026(2) | 0 | | Rb2 | 0.0222(3) | 0.0328(3) | 0.0244(3) | 0 | -0.0003(2) | 0 | | O1 | 0.0416(28) | 0.441(28) | 0.0269(25) | 0 | -0.0094(21) | 0 | | O2 | 0.0186(24) | 0.0899(49) | 0.0618(40) | 0 | 0.0041(27) | 0 | | O3 | 0.0522(22) | 0.0273(18) | 0.0510(24) | 0.0127(16) | 0.0149(17) | 0.0029(17) | Table 4. Anisotropic displacement parameters for K_2RuO_4 (in Ų) with standard deviations in parentheses. The U_{ij} are defined as $\exp[-2\pi^2(U_{11}h^2a^{*2}+U_{22}k^2b^{*2}+U_{33}l^2c^{*2}+U_{12}hka^*b^*+U_{13}hla^*c^*+U_{23}klb^*c^*)]$. | Atom | U_{11} | U_{22} | U_{33} | U_{23} | U_{13} | U_{12} | |------|------------|------------|------------|------------|-------------|------------| | Ru1 | 0.0161(2) | 0.0345(2) | 0.0169(2) | 0 | -0.0005(1) | 0 | | K1 | 0.0230(5) | 0.0651(8) | 0.0373(6) | 0 | 0.0020(4) | 0 | | K2 | 0.0208(5) | 0.0660(8) | 0.0218(5) | 0 | -0.0004(2) | 0 | | O1 | 0.0287(21) | 0.1825(63) | 0.0238(20) | 0 | -0.0117(15) | 0 | | O2 | 0.0206(23) | 0.2649(95) | 0.0473(29) | 0 | 0.0001(19) | 0 | | O3 | 0.1248(32) | 0.0353(17) | 0.0797(25) | 0.0070(16) | -0.0653(23) | 0.0028(19) | Table 5. Selected interatomic distances in Rb_2RuO_4 and K_2RuO_4 . | Rb ₂ RuO ₄ | Distance (Å) | K ₂ RuO ₄ | Distance (Å) | |----------------------------------|--------------|---------------------------------|--------------| | Ru-O1 | 1.773 | Ru-O1 | 1.740 | | Ru-O2 | 1.737 | Ru-O2 | 1.693 | | Ru-O3 | 1.766 | Ru-O3 | 1.732 | | Ru-O3 | 1.766 | Ru-O3 | 1.732 | | Rb1-O1 \times 2 | 3.151 | $K1-O1 \times 2$ | 3.081 | | Rb1-O1 | 3.349 | K1-O1 | 2.944 | | Rb1-O2 | 2.794 | K1-O2 | 2.556 | | Rb1-O3 \times 2 | 3.132 | $K1-O3 \times 2$ | 3.088 | | Rb1-O3 \times 2 | 3.369 | $K1-O3 \times 2$ | 3.190 | | Rb1-O3 \times 2 | 3.426 | $K1-O3 \times 2$ | 3.422 | | Rb2-O1 | 2.914 | K2-O1 | 2.794 | | Rb2-O1 | 2.943 | K2-O1 | 2.924 | | Rb2-O2 | 3.119 | K2-O2 | 2.817 | | Rb2-O2 \times 2 | 3.446 | $K2-O2 \times 2$ | 3.483 | | Rb2-O3 \times 2 | 2.858 | $K2-O3 \times 2$ | 2.682 | | $Rb2-O3 \times 2$ | 2.967 | $K2-O3 \times 2$ | 2.795 | Table 6. MAPLE values of A_2RuO_4 compounds (A = Cs, Rb, K) in kcal/mol. | Atom | Cs ₂ RuO ₄ | Rb ₂ RuO ₄ | K ₂ RuO ₄ | |------|----------------------------------|----------------------------------|---------------------------------| | 1 Ru | 4001.3 | 3993.5 | 4084.1 | | 1 A1 | 100.0 | 105.9 | 112.7 | | 1 A2 | 129.3 | 139.5 | 151.4 | | 1 01 | 604.9 | 598.6 | 611.0 | | 1 O2 | 631.4 | 640.7 | 658.8 | | 2 O3 | 606.5 | 599.7 | 612.0 | | Σ | 6680 | 6678 | 6842 | tetrahedrally coordinated by oxygen atoms with Ru–O distances ranging from 1.737 to 1.773 Å. The coordination number of Rb2 is nine and that of Rb1 is ten (10+1), the eleventh ligand is at a very long dis- Fig. 1. Schematic view of the unit cell of Rb_2RuO_4 (ruthenium tetrahedra and coordination spheres of rubidium atoms are shown). tance of 3.961 Å, see Fig. 1. The atomic positions for both compounds are listed in Table 2. It can be seen from Tables 3 and 4 that for Rb_2RuO_4 one displacement parameter of the oxygen atom (O2) is somewhat large and that in the case of K_2RuO_4 the displacement parameters of the oxygen atoms have increased Table 7. MAPLE values calculated for RuO₃ from A₂RuO₄ compounds (A = Cs, Rb, K, Na) and CsK₅Ru₂O₉ in kcal/mol. | Compound | Cs ₂ RuO ₄ * | CsK ₅ Ru ₂ O ₉ ** | Rb ₂ RuO ₄ * | K ₂ RuO ₄ * | $Na_2RuO_4^*$ | |---------------------------|------------------------------------|--|------------------------------------|-----------------------------------|---------------| | MAPLE (RuO ₃) | 6148 | 6209 | 6106 | 6242 | 6131 | $[*] A_2RuO_4; M(RuO_3) = M(A_2RuO_4) - M(A_2O); ** CsK_5Ru_2O_9; M(RuO_3) = [M(CsK_5Ru_2O_9) - \frac{1}{2}M(Cs_2O) - \frac{5}{2}M(K_2O)]/2.$ Fig. 2. Magnetic susceptibility of Rb_2RuO_4 represented as $\chi \ vs$. T (circles) and $\chi^{-1} \ vs$. T (squares) in an applied field of 5000 Oe. The full line represents the linear fit using the Curie-Weiss law. Fig. 3. Magnetic susceptibility of K_2RuO_4 represented as χ vs. T (circles) and χ^{-1} vs. T (squares) in an applied field of 5000 Oe. The full line represents the linear fit using the Curie-Weiss law. further. This can be understood by the arrangement of the ruthenium tetrahedra and the alkali metal cations, which is unfavourable with decreasing size of the alkali metal. The solutions in the acentric space group $Pn2_1a$, do not result in better refinement factors. Selected interatomic distances for both compounds are given in Table 5. The tetrahedral coordination for ruthenium is lost already in the case of Na_2RuO_4 [3], in which the ruthenium atom adopts five-fold coordination with oxygen atoms forming ladders of trigonal bipyramids *via* Ru–O–Ru linkages. Another example is the quaternary mixed alkali ruthenate CsK₅[RuO₄][RuO₅] [7] which contains isolated RuO₄ tetrahedra as well as RuO₅ trigonal bipyramids. The Madelung Part of Lattice Energy, MAPLE [8], calculated for all the alkali ruthenates as tabulated in Table 6 are satisfactory, it is remarkable however, that the values for Rb₂RuO₄ appear to step out of line. This can be explained by the absorption of Mo-K α radiation in the rubidium ruthenate, which influences the quality of the data set. The MAPLE values obtained for RuO₃ by subtracting the values of the respective oxides $(A_2O, where A = Cs, Rb, K, Na)$ from those of the corresponding A₂RuO₄ compounds are in good agreement (Table 7). The value obtained for RuO₃ from CsK₅[RuO₄][RuO₅], 6209 kcal/mol, is in between the RuO₃ values, 6148 kcal/mol and 6242 kcal/mol, obtained for Cs₂RuO₄ and K₂RuO₄, respectively. For the same reasons as explained above, here Rb₂RuO₄ and K₂RuO₄ show again the highest deviations from the average MAPLE value of RuO₃ which is 6167 kcal/mol. The magnetic measurements were carried out on polycrystalline powder samples. The plots of inverse susceptibility and susceptibility versus temperature for Rb₂RuO₄ and K₂RuO₄ are given in Figs 2 and 3, respectively, in an applied field of 5000 Oe. The inverse magnetic susceptibilities obey the Curie-Weiss Law down to about T = 60 K. Fitting the Curie and Weiss constants the values obtained are C =0.9 emu·K/mol for both compounds, and θ around -19 K for Rb₂RuO₄ and −30 K for K₂RuO₄. Effective magnetic moments are $\mu_{\rm eff} = 2.68 \ \mu_{\rm B}$ for both compounds, which is 95% of $\mu_{SO} = 2.83 \ \mu_{B}$, the ideal moment for the spin-only d^2 (S = 1) configuration, thus confirming the oxidation state +6 for ruthenium. Below 60 K, the inverse susceptibility curves diverge remarkably from the linear behaviour indicating the presence of antiferromagnetic interactions in both compounds, with $T_N = 9 \text{ K}$ for Rb_2RuO_4 and with $T_N = 14 \text{ K}$ and 4 K (2 transitions) for K_2RuO_4 . This can be correlated with the distances between the ruthenium tetrahedra, which are closer for K2RuO4 than for Rb_2RuO_4 giving rise to more pronounced interactions. Also, it can further be related to the case of Na_2RuO_4 ($T_N=35~K$), in which the tetrahedral coordination of the ruthenium atom is lost and converted into trigonal bipyramids linked *via* oxygen atoms. To evaluate this whole phenomenon in detail we need to carry out further neutron diffraction experiments. Finally, it would be interesting to know the magnetic properties of Cs_2RuO_4 and $CsK_5[RuO_4][RuO_5]$, and also the crystal structure and magnetism of Li_2RuO_4 with the largest and smallest alkali cation, respectively, in order to have a complete overview over the family of these compounds. D. Fischer, R. Hoppe, Z. Anorg. Allg. Chem. 591, 87 (1990). ^[2] M. Shikano, R. K. Kremer, M. Ahrens, H.-J. Koo, M.-H. Whangbo, J. Darriet, Inorg. Chem. 43, 5 (2004). ^[3] K. M. Mogare, K. Friese, W. Klein, M. Jansen, Z. Anorg. Allg. Chem. 630, 547 (2004). ^[4] R. J. Cava, Dalton Trans. 2979 (2004). ^[5] D. Fischer, Dissertation, Univ. Giessen (1991). ^[6] G. M. Sheldrick, ShelX-76 and ShelXS-86, programs for crystal structure solution and refinement, Cambridge 1976 (1986). ^[7] D. Fischer, R. Hoppe, Z. Anorg. Allg. Chem. 617, 37 (1992). ^[8] R. Hoppe, Angew. Chem. 78, 52 (1966); Angew. Chem. Int. Ed. Engl. 5, 95 (1966). ^[9] W. Clegg, Acta Crystallogr. A37, 22 (1981).