A Convenient Synthesis of Novel 20-, 23-, and 26-Membered Macrocyclic Oxathiadibenzo- and Oxathiadinaphthalenocrown Ethers, Part 1

Muhammad Ashram

Chemistry Department, College of Science, Mutah University, Mutah, Al-Karak, Jordan

Reprint requests to Dr. Muhammad Ashram. E-mail: ashram_1961@yahoo.com

Z. Naturforsch. 60b, 891-900 (2005); received March 7, 2005

A series of novel oxathiadibenzo- and oxathiadinaphthalenocrown ethers 1-18 have been successfully synthesized in good yield and in a simple way. They were characterized by NMR, mass spectroscopy and elemental analysis.

Key words: Fullerenes, Macromolecules, Crown Ethers, Oxathiacrown Ethers

Introduction

Fullerenes appeared as third generation of carbon clusters after graphite and diamond [1]. Several methods have been developed and applied for the separation of specific size and/or isomers of fullerenes from mixtures [2].

The supramolecular (*i. e.*, non-covalent or ionic) complexation of fullerenes with a variety of macromolecule hosts is a subject of extensive ongoing interest [3–15]. It has been shown that dibenzo-24-crown-8 forms an inclusion complex with C_{60} in preference to C_{70} [16] while azacrown ethers form a complex with C_{70} in preference to C_{60} [17].

As part of our ongoing research towards developing and designing new supramolecules [5, 18, 19] that might be capable to include fullerenes, we undertook a program to synthesize new series of large ring size and deep cavity of crown ethers namely oxathiadibenzocrown ethers (1-4, 9, 10, 13, 14, 17) and oxathiadinaphthalenocrown ethers (5-8, 11, 12, 15, 16, 18) in order to evaluate, in future studies, their potential as suitable new supramolecular hosts for fullerenes.

It has been shown that molecules of large ring size, deep cavity and presence of multiple π - π van der Waals interactions between the electron-rich aromatic ring(s) and the electron-poor fullerenes are of interest in host-guest fullerene chemistry [4]. Therefore, we believe that the above crowns and in particular the ones that contain naphthalene units, could be attractive candidates as receptors for C₆₀ or / and C₇₀.

Scheme 1.

0932-0776 / 05 / 0800-0891 \$ 06.00 © 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Scheme 2.

Results and Discussion

The first synthetic approach investigated towards thiacrown ethers 1-4, 13 and 14 is outlined in Scheme 1.

The ditosylates **19** and **20** were envisioned as being suitable precursors to condense with ethane 1,2dithiol, bis(2-mercaptoethyl)sulfide or bis(2-mercaptoethyl)ether. However all attempts to synthesize the above crown ethers *via* this route failed, affording only resinous products. Fortunately, an alternative route for synthesizing the macrocycles was successful as shown in Schemes 2, 3 and 4. As shown in Scheme 2, reaction of two equivalents of aldehyde **21** or ester **22** with one equivalent of ethane1,2-dithiol or bis(2mercaptoethyl)sulfide in presence of anhydrous potassium carbonate in refluxing anhydrous acetonitrile for 24 h afforded the compounds **23**–**26** in quantitative yield. Reduction of dialdehydes **23** or **24** with NaBH₄ in methanol and diesters **25** or **26** with LiAlH₄ in tetrahydrofuran followed by chlorination with freshly distilled thionyl chloride in dry benzene at room tem-

Scheme 3.

perature produced dichlorides 31-34 as key precursors in very good yield. The syntheses of crown ethers 1-8 and 9-12 were accomplished by reaction of dichlorides 31-34 with corresponding aliphatic thiols (Scheme 3). Several attempts of final cyclization of precursors 31 or 32 with an appropriate thiol in presence of potassium hydroxide and ethanol/benzene mixture failed to give the expected macrocycles 1, 2, 3 or 4. However, replacement of the ethanol/benzene solvent mixture by acetonitrile in presence of potassium carbonate at reflux temperature afforded the desired macrocycles 1-12 in very good yield. The synthetic procedure for crown ethers 13-18 is the same as for crowns 1-12 except the use of dichlorides 39 and 40 as key precursors (Scheme 4).

Experimental Section

Melting points are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a 200 MHz and 50 MHz NMR spectrometers, respectively. Unless otherwise noted, samples were dissolved in CDCl₃ using TMS as internal standard. All reagents were of analytical grade and used without further purification. Chromatographic separations were carried out on thin layer chromatography (TLC) using silica gel GF254 (Fluka) or column chromatography using silica gel columns (60–120 mesh, CDH). All reactions were carried out under dry nitrogen. Ditosylates **19** and **20** and *o*-(2-bromoethoxy)benzaldehyde **21** were prepared according to the literature procedures [20].

General procedure for the synthesis of dialdehydes 23, 24 and 35

In a 100 ml one-necked flask equipped with a magnetic stirrer bar and a reflux condenser, o-(2-bromoethoxy)benzaldehyde **21** (2.0 g, 8.7 mmol), dithiol (4.35 mmol) and anhydrous K₂CO₃ (1.81 g, 13.1 mmol) were mixed with anhydrous CH₃CN (50 ml). The mixture was refluxed for 24 h and then allowed to cool to room temperature. The mixture was filtered and the solid was washed with CHCl₃. The combined filtrate was evaporated to dryness to obtain the desired dialdehydes in nearly quantitative yield.

1,14-Diformyl-1,2;13,14-dibenzo-3,12-dioxa-6,9-dithia-tetradeca-1,13-diene (**23**)

Pale yellow solid. Yield 1.65 g (97%). An analytical sample was purified by TLC using ethyl acetate/hexane (2:3) as eluent. – M. p. 93–94 °C. – ¹H NMR: δ = 2.90 (s, 4 H, SCH₂CH₂S), 3.02 (t, *J* = 6 Hz, 4 H, SCH₂CH₂O), 4.22 (t, *J* = 6 Hz, 4 H, SCH₂CH₂O), 6.90–7.06 (m, 4 H), 7.52 (t, *J* = 3 Hz, 2 H), 7.80 (d, *J* = 4 Hz, 2 H), 10.48 (s, 2 H, CHO). – ¹³C NMR: δ = 30.1, 33.0, 68.6, 113.0, 121.4, 125.0, 128.8, 135.6, 160.6, 189.5 (C=O). – +APCI MS: *m/z* [M+1]⁺ calcd. for C₂₀H₂₂S₂O₄: 391.1; found 391.2 (25%).

1,17-Diformyl-1,2;16,17-dibenzo-3,15-dioxa-6,9,12-trithia-heptadeca-1,16-diene (**24**)

Pale yellow solid. Yield 1.88 g (95%). An analytical sample was purified by TLC using ethyl acetate/hexane (2:3) as

Scheme 4.

eluent. – M. p. 71–72 °C. – ¹H NMR: δ = 2.82 (br, 8 H, SCH₂CH₂SCH₂CH₂S), 3.04 (t, *J* = 6 Hz, 4 H, SCH₂CH₂O), 4.28 (t, *J* = 6 Hz, 4 H, SCH₂CH₂O), 6.92–7.10 (m, 4 H), 7.55 (t, *J* = 4 Hz, 2 H), 7.84 (d, *J* = 4 Hz, 2 H), 10.50 (s, 2 H, CHO). – ¹³C NMR: δ = 30.0, 32.4, 32.6, 68.2, 112.5, 121.1, 125.2, 128.5, 135.4, 160.1, 189.4 (C=O). – +APCI MS: *m*/z [M+1]⁺ calcd. for C₂₂H₂₆S₃O₄: 451.1; found 451.2 (65%).

1,17-Diformyl-1,2;16,17-dibenzo-3,9,15-trioxa-6,12-dithia-heptadeca-1,16-diene (**35**)

The crude product was purified by column chromatography using ethyl acetate/hexane (2:3) as eluent to give a pale yellow oil. Yield 1.87 g (98%). – ¹H NMR: $\delta = 2.79$ (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.02 (t, J =4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.68 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 4.20 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 6.92 – 7.05 (m, 4 H), 7.50 (t, J = 4 Hz, 2 H), 7.83 (d, J = 4 Hz, 2 H), 10.48 (s, 2 H, CHO). – 13 C NMR: $\delta = 31.0, 32.1, 69.1, 71.0, 112.6, 121.0, 124.5, 128.5, 136.1, 160.6, 189.6 (C=O). – +APCI MS: <math>m/z$ [M+1]⁺ calcd. for C₂₂H₂₆S₂O₅: 435.1; found 435.1 (80%).

General procedure for the synthesis of diols 27, 28 and 37

To a solution of dialdehyde (4.44 mmol) in THF (50 ml) at room temperature was added NaBH₄ (0.68 g, 17.8 mmol). After 10 min the reaction was quenched by adding 5 ml of cold water followed by aqueous 5% HCl until the solution becomes acidic to pH paper. The mixture was extracted with diethyl ether (50 ml). The organic layer was dried over anhydrous MgSO₄ and then evaporated to afford the diols in high yield.

1,16-Dihydroxy-2,3;14,15-dibenzo-4,13-dioxa-7,10-dithiahexadeca-2,14-diene (27)

Pale yellow semi-solid. Yield 1.76 g (98%). $^{-1}$ H NMR: $\delta = 2.84$ (s, 4 H, SCH₂CH₂S), 2.89 (s, 2 H, OH), 2.98 (t, J =4 Hz, 4 H, SCH₂CH₂O), 4.21 (t, J = 4 Hz, 4 H, SCH₂CH₂O), 4.69 (s, 4 H, ArCH₂), 6.82 (d, J = 4 Hz, 2 H), 6.92 (t, J =4 Hz, 2 H), 7.25 (m, 4 H). $^{-13}$ C NMR: $\delta =$ 31.9, 32.2, 62.2, 67.0, 111.3, 121.2, 128.9, 129.0, 130.0, 156.8. $^{-1}$ APCI MS: m/z [M+1]⁺ calcd. for C₂₀H₂₆S₂O₄: 395.13; found 377.1 (M⁺-OH, 100%).

1,19-Dihydroxy-2,3;17,18-dibenzo-4,16-dioxa-7,10,13-trithianonadeca-2,17-diene (**28**)

The crude product was washed with benzene to give a colorless solid. Yield 1.8 g (94%). – M. p. 75–76.5 °C. – ¹H NMR: δ = 2.81 (br, 8 H, SCH₂CH₂SCH₂CH₂S), 2.98 (t, *J* = 4 Hz, 4 H, SCH₂CH₂O), 4.21 (t, *J* = 4 Hz, 4 H, SCH₂CH₂O), 4.69 (s, 4 H, Ar-CH₂), 6.88 (d, *J* = 4 Hz, 2 H), 6.97 (t, *J* = 4 Hz, 2 H), 7.18–7.33 (br, 4 H). – ¹³C NMR: δ = 31.5, 32.1, 32.2, 61.9, 66.5, 111.1, 121.0, 128.4, 128.5, 129.0, 156.1. – +APCI MS: *m*/z [M+1]⁺ calcd. for C₂₂H₃₀S₃O₄: 455.13; found 437.2 (M⁺-OH, 100%).

1,19-Dihydroxy-2,3;17,18-dibenzo-4,10,16-trioxa-7,13-dithianonadeca-2,17-diene (**37**)

Colorless oil. Yield 1.9 g (97%). $^{-1}$ H NMR: $\delta = 2.78$ (t, J = 6 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.0 (t, J = 6 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.66 (t, J = 6 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 4.21 (t, J = 6 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 4.69 (s, 4 H, ArCH₂), 6.85 (d, J = 4 Hz, 2 H), 6.95 (t, J = 4 Hz, 2 H), 7.19–7.31 (m, 4 H). $^{-13}$ C NMR: $\delta = 31.9$, 32.0, 62.1, 67.0, 71.0, 111.0, 120.8, 128.6, 129.0, 129.5, 156.4. $^{-}$ +APCI MS: m/z [M+1]⁺ calcd. for C₂₂H₃₀S₂O₅: 439.15; found 421.2 (M⁺-OH, 100%).

Synthesis of methyl 3-(2-bromoethoxy)-2-naphthoate (22)

In a 250 ml one-necked flask equipped with a magnetic stirrer bar and a reflux condenser, methyl 3-hydroxy-2-naphthoate (10.1 g, 0.05 mol), 1,2-dibromoethane (93.1 g, 0.5 mol) and anhydrous K₂CO₃ (13.8 g, 0.1 mol) were mixed with anhydrous CH₃CN (500 ml). The mixture was refluxed for 2 days and then cooled to room temperature, filtered and the solid was washed with CH₃CN. The filtrate was evaporated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using ethyl acetate/hexane (1:4) as eluent to give 22 as a pale yellow oil 12.8 g (83%). – ¹H NMR: $\delta = 3.75$ (t, J = 6 Hz, 2 H, OCH₂*CH*₂Br), 3.99 (s, 3 H, OCH₃), 4.46 (t, J = 6 Hz, 2 H, OCH₂CH₂Br), 7.20 (s, 1 H), 7.41 (t, J = 4 Hz, 1 H), 7.52 (t, J = 4 Hz, 1 H), 7.71 (d, J = 4 Hz, 1 H), 7.82 (d, J = 4 Hz, 1 H), 8.32 (s, 1 H). $-{}^{13}$ C NMR: $\delta = 28.6$, 52.2, 69.0, 109.0, 122.1, 125.0, 127.5, 127.9, 128.0, 128.8, 133.0, 135.9, 154.0, 166.6 (C=O). -+APCI MS: m/z [M+1]⁺ calcd. for C₁₄H₁₃BrO₃: 309.0; found 309.0 (M⁺, 100%).

General procedure for the synthesis of diesters 25, 26 and 36

In a 250 ml one-necked flask equipped with a magnetic stirrer bar and a reflux condenser, methyl 3-(2bromoethoxy)-2-naphthoate **22** (3.1 g, 10.0 mmol), dithiol [HS(CH₂CH₂S)_nH, n = 1, 2, or (HSCH₂CH₂)₂O] (5.0 mmol) and anhydrous K₂CO₃ (10.0 mmol) were mixed with anhydrous CH₃CN (150 ml). The mixture was refluxed for 24 h and then allowed to cool to room temperature. The mixture was filtered and the solid was washed with CH₃CN. The combined filtrate was evaporated to dryness to obtain the desired diesters in nearly quantitative yield.

1,14-Di-(methoxycarbonyl)-1,2;13,14-dinaphthaleno-3,12-dioxa-6,9-dithiatetradeca-1,13-diene (**25**)

The crude product was washed with diethyl ether to give a pale yellow solid. Yield 2.7 g (98%). – M. p. 108–109.5 °C. – ¹H NMR: $\delta = 2.99$ (s, 4 H, SCH₂CH₂S), 3.06 (t, J = 5 Hz, 4 H, SCH₂CH₂OAr), 3.92 (s, 6 H, OCH₃), 4.31 (t, J = 5 Hz, 4 H, SCH₂CH₂OAr), 7.20 (s, 2 H), 7.39 (t, J = 4 Hz, 2 H), 7.51 (t, J = 4 Hz, 2 H), 7.70 (d, J = 4 Hz, 2 H), 7.81 (d, J = 5 Hz, 2 H), 8.30 (s, 2 H). – ¹³C NMR: $\delta = 31.0, 32.0, 52.5, 69.1, 108.4, 121.6, 124.9, 127.5, 127.7, 128.5, 128.6, 133.0, 136.0, 154.9, 166.5. – +APCI MS: <math>m/z$ [M+1]⁺ calcd. for C₃₀H₃₀S₂O₆: 551.15; found 349 (M⁺-C₁₂H₉O₃, 21%).

1,17-Di-(methoxycarbonyl)-1,2;16,17-dinaphthaleno-3,15dioxa-6,9,12-trithiaheptadeca-1,16-diene (**26**)

The crude product was purified by column chromatogtaphy using ethyl acetate/hexane (3:7) as eluent to give a colorless solid. Yield 2.51 g (81%). – M. p. 80–81 °C. – ¹H NMR: $\delta = 2.88$ (br, 8 H, SCH₂CH₂SCH₂CH₂S), 3.05 (t, J = 4 Hz, 4 H, SCH₂CH₂OAr), 3.93 (s, 6 H, OCH₃) 4.30 (t, J = 5 Hz, 4 H, SCH₂CH₂OAr), 7.18 (s, 2 H), 7.37 (t, J = 5 Hz, 2 H), 7.50 (t, J = 5 Hz, 2 H), 7.57 (d, J = 5 Hz, 2 H), 7.80 (d, J = 6 Hz, 2 H), 8.30 (s, 2 H). – ¹³C NMR: $\delta = 30.9$, 32.1, 32.3, 52.2, 68.8, 108.0, 121.5, 124.6, 126.2, 127.5, 127.9, 128.0, 132.5, 136.0, 154.5, 166.5 (C=O). – +APCI MS: m/z[M+1]⁺ calcd. for C₃₂H₃₄S₃O₆: 611.15; found 409.1 (M⁺-C₁₂H₉O₃,100%).

1,17-Di-(methoxycarbonyl)-1,2;16,17-dinaphthaleno-3,9, 15-trioxa-6,12-dithiaheptadeca-1,16-diene (**36**)

Golden oil. Yield 2.88 g (98%). $^{-1}$ H NMR: $\delta = 2.87$ (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.04 (t, J =3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.70 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.95 (s, 6 H, OCH₃), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 7.20 (s, 2 H), 7.39 (t, J = 3 Hz, 2 H), 7.54 (t, J = 3 Hz, 2 H), 7.71 (d, J = 4 Hz, 2 H), 7.80 (d, J = 4 Hz, 2 H), 8.29 (s, 2 H). $^{-13}$ C NMR: $\delta = 31.5$, 32.1, 52.1, 69.0, 71.0, 108.0, 122.0, 124.9, 126.6, 127.8, 128.2, 128.5, 132.8, 135.9, 154.3, 166.8 (C=O). $^{-}$ +APCI MS: m/z [M+1]⁺ calcd. for C₃₂H₃₄S₂O₇: 595.17; found 393.1 (M⁺-C₁₂H₉O₃, 100%).

General procedure for the synthesis of diols 29, 30 and 38

To a suspension of LiAlH₄ (0.34 g, 8.9 mmol) in anhydrous THF (100 ml) was added a solution of diester (4.45 mmol) in anhydrous THF (50 ml) at room temperature. The reaction mixture was stirred for 5-10 min and then was quenched by adding the mixture into wet diethyl ether (250 ml) at 0 °C. The mixture was then acidified with aqueous 5% HCl. The organic layer was separated and the aqueous layer was extracted with diethyl ether (100 ml). The combined organic layers were dried over anhydrous MgSO₄ and evaporated to give the product.

1,16-Dihydroxy-2,3;14,15-dinaphthaleno-4,13-dioxa-7,10dithiahexadeca-2,14-diene (**29**)

Pale yellow solid. Yield 2.0 g (91%). – M. p. 139– 140 °C. – ¹H NMR [D₆]-acetone: δ = 2.99 (s, 4 H, SCH₂CH₂S), 3.11 (t, *J* = 3 Hz, 4 H, SCH₂CH₂OAr), 4.20 (t, *J* = 2 Hz, 2 H, OH), 4.34 (t, *J* = 4 Hz, 4 H, SCH₂CH₂OAr), 4.20 (t, 4.58 (d, *J* = 2 Hz, 4 H, ArCH₂), 7.29 (s, 2 H), 7.30–7.48 (m, 6 H), 7.80 (t, *J* = 3 Hz, 2 H), 7.92 (s, 2 H). – ¹³C NMR [D₆]-acetone: δ = 33.6, 31.6, 60.1, 68.9, 106.5, 124.5, 125.0, 126.6, 127.5, 128.4, 128.8, 132.4, 133.1, 155.0. – +APCI MS: *m*/z [M+1]⁺ calcd. for C₂₈H₃₀S₂O₄: 495.16; found 477.2 (M⁺- OH, 100%).

1,19-Dihydroxy-2,3;17,18-dinaphthaleno-4,16-dioxa-7,10, 13-trithianonadeca-2,17-diene (**30**)

Colorless solid. Yield 2.4 g (98%). – M. p. 142–143 °C. – ¹H NMR [D₆]-DMSO: δ = 2.60 (br,

8 H, SCH₂CH₂SCH₂CH₂S), 2.71 (t, J = 3 Hz, 4 H, SCH₂CH₂OAr), 4.05 (t, J = 3 Hz, 4 H, SCH₂CH₂OAr), 4.41 (d, J = 2 Hz, 4 H, ArCH₂), 5.02 (br, 2 H, OH), 7.08 (s, 2 H), 7.10–7.22 (m, 4 H), 7.53–7.61 (m, 4 H), 7.65 (s, 2 H). – ¹³C NMR [D₆]-DMSO: $\delta = 31.0, 32.5, 32.6, 58.9, 68.2, 106.2, 124.1, 125.6, 126.0, 126.9, 128.0, 128.9, 132.7, 133.5, 154.4. – +APCI MS: <math>m/z$ [M+1]⁺ calcd. for C₃₀H₃₄S₃O₄: 555.16; found 537.1 (M⁺- OH, 100%).

1,19-Dihydroxy-2,3;17,18-dinaphthaleno-4,10,16-trioxa-7,13-dithianonadeca-2,17-diene (**38**)

Colorless solid. Yield 2.18 g (91%). – M. p. 103– 104 °C. – ¹H NMR [D₆]-DMSO: $\delta = 2.89$ (t, J =4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.10 (t, J =4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.71 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 4.35 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 4.35 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 4.76 (d, J = 2 Hz, 4 H, ArCH₂), 5.34 (t, J = 2 Hz, 2 H, OH), 7.39 (s, 2 H), 7.41–7.56 (m, 4 H), 7.85–7.92 (m, 4 H), 7.96 (s, 2 H). – ¹³C NMR [D₆]-DMSO: $\delta =$ 31.3, 31.8, 59.0, 68.6, 70.1, 106.5, 124.5, 126.0, 126.7, 127.1, 128.0, 129.0, 132.9, 133.8, 154.8. – +APCI MS: m/z [M+1]⁺ calcd. for C₃₀H₃₄S₂O₅: 539.18; found 521.2 (M⁺- OH, 100%).

General procedure for the synthesis of dichlorides 31-34 and 39-40

To a solution of diol (1.08 mmol) in anhydrous benzene (150 ml) was added freshly distilled SOCl₂ (0.24 ml, 3.2 mmol). The reaction mixture was stirred at room temperature for 0.5 - 1.5 h and then was quenched by adding 20 ml of cold water. The organic layer was washed with water until the aqueous layer was neutral to pH paper. The organic layer was dried over anhydrous MgSO₄ and evaporated to give the product.

1,16-Dichloro-2,3;14,15-dibenzo-4,13-dioxa-7,10-dithiahexadeca-2,14-diene (**31**)

Colorless solid. Yield 0.38 g (81%). – M. p. 91–92 °C. – ¹H NMR: δ = 2.89 (s, 4 H, SCH₂CH₂S), 3.00 (t, *J* = 3 Hz, 4 H, SCH₂CH₂OAr), 4.20 (t, *J* = 4 Hz, 4 H, SCH₂CH₂OAr), 4.66 (s, 4 H, ArCH₂), 6.85–7.00 (m, 6 H), 7.35 (t, *J* = 3 Hz, 2 H). – ¹³C NMR: δ = 31.5, 33.1, 41.5, 68.5, 112.1, 121.1, 126.0, 130.5, 131.0, 156.0. – +APCI MS: *m*/*z* [M+1]⁺ calcd. for C₂₀H₂₄S₂O₂Cl₂: 431.06; found 395.1 (M⁺-Cl, 100%).

1,19-Dichloro-2,3;17,18-dibenzo-4,16-dioxa-7,10,13-trithianonadeca-2,17-diene (**32**)

The crude product was washed with diethyl ether to give a pale yellow solid. Yield 0.39 g (74%). – M. p. 54–55 °C. – ¹H NMR: δ = 2.81 (br, 8H, SCH₂CH₂SCH₂CH₂S), 2.98 (t, *J* = 3 Hz, 4 H, SCH₂CH₂OAr), 4.20 (t, *J* = 3 Hz, 4 H, SCH₂*CH*₂OAr), 4.65 (s, 4 H, Ar*CH*₂), 6.86 – 7.10 (m, 4 H), 7.28 – 7.40 (m, 4 H). – ¹³C NMR: δ = 31.7, 32.4, 33.0, 42.0, 68.5, 112.0, 121.2, 126.1, 130.0, 130.6, 157.0. – +APCI MS: *m*/z [M+1]⁺ calcd. for C₂₂H₂₈S₃O₂Cl₂: 491.06; found 455.1 (M⁺-Cl, 100%).

1,16-Dichloro-2,3;14,15-dinaphthaleno-4,13-dioxa-7,10dithiahexadeca-2,14-diene (**33**)

Pale yellow solid. Yield 0.43 g (75%). – M. p. 104– 105 °C. – ¹H NMR: δ = 2.99 (s, 4 H, SCH₂CH₂S), 3.08 (t, *J* = 3 Hz, 4 H, SCH₂CH₂OAr), 4.34 (t, *J* = 3 Hz, 4 H, SCH₂CH₂OAr), 4.79 (s, 4 H, ArCH₂), 7.14 (s, 2 H), 7.30– 7.50 (m, 4 H), 7.66–7.78 (m, 4 H), 7.82 (s, 2 H). – ¹³C NMR: δ = 31.1, 32.9, 42.1, 68.6, 105.8, 124.1, 126.5, 127.0, 128.0, 130.1, 131.0, 132.7, 133.3, 154.9. – +APCI MS: *m*/*z* [M+1]⁺ calcd. for C₂₈H₂₈S₂O₂Cl₂: 531.1; found 495.0 (M⁺- Cl, 100%).

1,19-Dichloro-2,3;17,18-dinaphthaleno-4,16-dioxa-7,10, 13-trithianonadeca-2,17-diene (**34**)

Pale yellow solid. Yield 0.46 g (73%). – M. p. 94–95 °C. – ¹H NMR [D₆]-DMSO: δ = 2.62 (br, 8 H, SCH₂CH₂SCH₂CH₂S), 2.80 (t, *J* = 3 Hz, 4 H, SCH₂CH₂OAr), 4.08 (t, *J* = 3 Hz, 4 H, SCH₂CH₂OAr), 4.08 (t, *J* = 3 Hz, 4 H, SCH₂CH₂OAr), 4.61 (s, 4 H, ArCH₂), 7.18 (s, 2 H), 7.08–7.28 (m, 4 H), 7.55–7.62 (m, 4 H), 7.74 (s, 2 H). – ¹³C NMR [D₆]-DMSO: δ = 31.0, 32.2, 32.6, 42.9, 68.9, 107.5, 124.9, 127.1, 127.5, 127.8, 128.2, 128.6, 130.9, 134.8, 154.2. – +APCI MS: *m*/z [M+1]⁺ calcd. for C₃₀H₃₂S₃O₂Cl₂: 591.1; found 556.1 (M⁺ - Cl, 46%).

1,19-Dichloro-2,3;17,18-dibenzo-4,10,16-trioxa-7,13-dithianonadeca-2,17-diene (**39**)

The crude product was purified by column chromatography using ethyl acetate/hexane (1:4) to give a colorless oil. Yield 0.36 g (71%). – ¹H NMR: δ = 2.84 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.00 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.70 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 4.21 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 4.75 (s, 4 H, ArCH₂), 6.89 (d, J = 3 Hz, 2 H), 6.96 (t, J = 3 Hz, 2 H), 7.29 (d, J = 2 Hz, 2 H) 7.37 (t, J = 2 Hz, 2 H). – ¹³C NMR: δ = 31.0, 31.5, 41.2, 68.0, 70.1, 111.5, 120.1, 129.5, 130.0, 156.4. – +APCI MS: m/z [M+1]⁺ calcd. for C₂₂H₂₈S₂O₃Cl₂: 476.09; found 476.1 (M⁺, 80%).

1,19-Dichloro-2,3;17,18-dinaphthaleno-4,10,16-trioxa-7, 13-dithianonadeca-2,17-diene (**40**)

Colorless solid. Yield 0.42 g (67%). – M. p. 61– 62 °C. – ¹H NMR [D₆]-DMSO: δ = 2.85 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.02 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.62 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 4.35 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 4.88 (s, 4 H, ArCH₂), 7.40 (s, 2 H), 7.33-7.51 (m, 4 H), 7.79-7.87 (m, 4 H), 7.96 (s, 2 H). - ¹³C NMR [D₆]-DMSO: $\delta = 31.2, 31.9, 42.7,$ 68.8, 71.0, 107.8, 124.8, 127.0, 127.4, 127.8, 128.2, 128.4, 131.0, 135.0, 154.5. - +APCI MS: m/z [M+1]⁺ calcd. for C₃₀H₃₂S₂O₃Cl₂: 575.12; found 538.2 (M⁺- Cl, 100%).

General procedure for the synthesis of the crown ethers $1\!-\!18$

Macrocycles 1-18 were synthesized under high dilution employing in modified form cyclization procedure of Buter and Kellogg [21]. In a 250 ml three-necked flsask equipped with a magnetic stirrer bar and a reflux condenser and a gas line to maintain a nitrogen atmosphere, anhydrous K₂CO₃ (0.54 g, 3.9 mmol) was suspended in anhydrous CH₃CN (150 ml). To this well-stirred solution at reflux temperature was added a solution containing dithiol $[HS(CH_2CH_2S)_nH]$, n = 1, 2 or (HSCH₂CH₂)₂O] (1.3 mmol) and dichloride 31-34, 39, 40 (1.3 mmol) in anhydrous CH₃CN (50 ml or 3 ml of DMF + 47 ml of CH₃CN in the case of dichloride 33, 34 and 40) was added drop wise over a period of 10-12 h. The reaction mixture was further refluxed with stirring for another 12 h. The reaction mixture was filtered and the filtrate was evaporated. The residue was dissolved in CHCl₃ (100 ml) and washed with H₂O. The organic layer was dried over anhydrous MgSO₄ and then evaporated. The purification was carried out as indicated by the entries below for the separate compounds.

2,3;10,11-Dibenzo-1,12-dioxa-5,8,15,18-tetrathiacycloeicosane-2,10-diene (1)

The crude product was purified by column chromatography using ethyl acetate/hexane (1.5:8.5) as eluent to give **1** as a colorless solid. Yield 0.31 g (53%). – M. p. 78 – 79 °C. – ¹H NMR: $\delta = 2.77$ (s, 4 H, SCH₂CH₂S), 2.98 (s, 4 H, SCH₂CH₂S), 3.10 (t, J = 3 Hz, 4 H, SCH₂CH₂O), 3.80 (s, 4 H, ArCH₂), 4.21 (t, J = 3 Hz, 4 H, SCH₂CH₂O), 6.85 (d, J = 4 Hz, 2 H), 6.95 (t, J = 3 Hz, 2 H), 7.18 – 7.30 (m, 4 H). – ¹³C NMR: $\delta = 30.6$, 31.5, 32.0, 33.2, 69.0, 112.0, 121.6, 127.2, 128.6, 130.6, 156.4. – +APCI MS: m/z [M+1]⁺ calcd. for C₂₂H₂₈S₄O₂: 453.09; found 453.2 (100%). – Analysis for C₂₂H₂₈S₄O₂: calcd. C 58.37, H 6.23, S 28.33; found C 58.29, H 6.20, S 28.39.

2,3;13,14-Dibenzo-1,15-dioxa-5,8,11,18,21-pentathiacyclotricosane-2,13-diene (**2**)

The crude product was purified by TLC using ethyl acetate/hexane (1:4) as eluent to give **2** as a colorless solid. Yield 0.26 g (39%). – M. p. 105-106 °C. – ¹H NMR:

2,3;10,11-Dibenzo-1,12-dioxa-5,8,15,18,21-pentathiacyclotricosane-2,10-diene (**3**)

The crude product was purified by TLC using ethyl acetate/hexane (1:4) as eluent to give **3** as a colorless solid. Yield 0.29 g (44%). – M. p. 85–86 °C. – ¹H NMR: δ = 2.75 (s, 4 H, SCH₂CH₂S), 2.92 (br, 8 H, SCH₂CH₂SCH₂CH₂CH₂S), 3.00 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 3.79 (s, 4 H, ArCH₂), 4.19 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 6.88 (d, *J* = 3 Hz, 2 H), 6.94 (t, *J* = 3 Hz, 2 H), 7.18–7.28 (m, 4 H). – ¹³C NMR: δ = 30.5, 31.5, 31.8, 32.9, 33.2, 69.0, 112.0, 121.3, 127.8, 129.0, 131.0, 156.5. – +APCI MS: *m*/*z* [M+1]⁺ calcd. for C₂₄H₃₂S₅O₂: calcd. C 56.21, H 6.29, S 31.26; found: C 56.27, H 6.35, S 31.32.

2,3;13,14-Dibenzo-1,15-dioxa-5,8,11,18,21,24-hexathiacyclohexacosane-2,13-diene (**4**)

The crude product was washed with diethyl ether to give **4** as a pale yellow solid. Yield 0.29 g (39%). – M. p. 103–104.5 °C. – ¹H NMR: δ = 2.69 (br, 8 H, SCH₂CH₂SCH₂CH₂S), 2.88 (br, 8 H, SCH₂CH₂SCH₂CH₂S), 3.00 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 3.79 (s, 4 H, ArCH₂), 4.20 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 6.83 (d, *J* = 2 Hz, 2 H), 6.94 (t, *J* = 3 Hz, 2 H), 7.15– 7.30 (m, 4 H). – ¹³C NMR: δ = 30.1, 31.4, 32.0, 32.2, 32.6, 33.0, 68.8, 112.0, 121.3, 127.5, 128.5, 130.6, 157.0. – +APCI MS: *m*/z [M+1]⁺ calcd. for C₂₆H₃₆S₆O₂: 573.1; found 573.2 (100%). – Analysis for C₂₆H₃₆S₆O₂: calcd. C 54.51, H 6.33, S 33.57; found C 54.41, H 6.26, S 33.48.

2,3;10,11-Dinaphthaleno-1,12-dioxa-5,8,15,18-tetrathiacycloeicosane-2,10-diene (**5**)

The crude product was washed with diethyl ether to give **5** as a pale yellow solid. Yield 0.34 g (48%). – M. p. 135–136 °C. – ¹H NMR: δ = 2.85 (s, 4 H, SCH₂CH₂S), 3.05 (s, 4 H, SCH₂CH₂S), 3.08 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 3.96 (s, 4 H, ArCH₂), 4.35 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 7.10 (s, 2 H), 7.30–7.45 (m, 4 H), 7.60–7.72 (m, 4 H), 7.74 (s, 2 H). – ¹³C NMR: δ = 31.5, 31.8, 32.8, 33.5, 69.0, 106.9, 124.2, 126.5, 126.8, 127.8, 128.7, 129.0, 129.9, 133.9, 155.0. – +APCI MS: *m*/z [M+1]⁺ calcd. for C₃₀H₃₂S₄O₂:

553.13; found 553.0 (100%). – Analysis for $C_{30}H_{32}S_4O_2$: calcd. C 65.18, H 5.83, S 23.20; found C 65.11, H 5.76, S 23.10.

2,3;13,14-Dinaphthaleno-1,15-dioxa-5,8,11,18,21-pentathiacyclotricosane-2,13-diene (**6**)

The crude product was washed with benzene to give **6** as a pale brown solid. Yield 0.48 g (61%). – M. p. 145 – 146 °C. – ¹H NMR: δ = 2.75 (br, 8 H, SCH₂CH₂SCH₂CH₂S), 3.00 (s, 4 H, SCH₂CH₂S), 3.11 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 3.94 (s, 4 H, ArCH₂), 4.31 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 7.13 (s, 2 H), 7.31 – 7.48 (m, 4 H), 7.68 – 7.74 (m, 4 H), 7.78 (s, 2 H). – ¹³C NMR: δ = 30.2, 31.3, 32.0, 32.2, 33.5, 68.5, 106.3, 124.1, 125.2, 125.4, 127.3, 128.6, 128.8, 129.6, 133.8, 154.6. – +APCI MS: *m*/z [M+1]⁺ calcd. for C₃₂H₃₆S₅O₂: 613.13, found 613.2 (100%). – Analysis for C₃₂H₃₆S₅O₂: calcd. C 62.71, H 6.09, S 26.15; found C 62.80, H 5.88, S 26.21.

2,3;10,11-Dinaphthaleno-1,12-dioxa-5,8,15,18,21-pentathiacyclotricosane-2,10-diene (7)

The crude product was purified by column chromatography using CHCl₃ as eluent to give **7** as a colorless solid. Yield 0.49 g (63%). – M. p. 136–138 °C. – ¹H NMR: δ = 2.79 (s, 4 H, SCH₂CH₂S), 2.92 (br, 8 H, SCH₂CH₂SCH₂CH₂S), 3.02 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 3.90 (s, 4 H, Ar*CH*₂), 4.29 (t, *J* = 3 Hz, 4 H, SCH₂*CH*₂O), 7.08 (s, 2 H), 7.18–7.45 (m, 4 H), 7.61–7.71 (m, 6 H). – ¹³C NMR: δ = 31.0, 31.4, 32.0, 32.9, 33.1, 68.8, 106.8, 124.0, 126.2, 126.6, 127.5, 128.8, 129.0, 129.2, 134.0, 154.8. – +APCI MS: *m*/*z* [M+1]⁺ calcd. for C₃₂H₃₆S₅O₂: calcd. C 62.71, H 5.92, S 26.15; found C 62.67, H 5.81, S 26.09.

2,3;13,14-Dinaphthaleno-1,15-dioxa-5,8,11,18,21,24-hexathiacyclohexacosane-2,13-diene (**8**)

The crude product was washed with benzene to give **8** as a colorless solid. Yield 0.56 g (64%). – M. p. 156–158 °C. – ¹H NMR: δ = 2.74 (br, 8 H, SCH₂CH₂SCH₂CH₂S), 2.91 (br, 8 H, SCH₂CH₂OL₂SCH₂CH₂S), 3.08 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 3.92 (s, 4 H, ArCH₂), 4.30 (t, *J* = 3 Hz, 4 H, SCH₂CH₂O), 7.11 (s, 2 H), 7.32–7.48 (m, 4 H), 7.63–7.75 (m, 6 H). – ¹³C NMR: δ = 30.8, 31.4, 32.1, 32.2, 32.5, 33.1, 68.8, 106.8, 124.0, 126.2, 126.4, 127.6, 128.5, 128.7, 129.6, 133.7, 154.2. – +APCI MS: *m*/*z* [M+1]⁺ calcd. for C₃₄H₄₀S₆O₂: calcd. C 60.68, H 5.99, S 28.58; found C 60.77, H 6.11, S 28.45.

2,3;13,14-Dibenzo-1,8,15-trioxa-5,11,18,21-tetrathiacyclotricosane-2,13-diene (**9**)

The crude product was washed with benzene to give **9** as a colorless solid. Yield 0.30 g (47%). – M.p.

83–84 °C. – ¹H NMR: δ = 2.70 (t, *J* = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 2.98 (s, 4 H, SCH₂CH₂S), 3.05 (t, *J* = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.64 (t, *J* = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.81 (s, 4 H, ArCH₂), 4.20 (t, *J* = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂CA₂OA), 6.86 (d, *J* = 4 Hz, 2 H), 6.92 (t, *J* = 4 Hz, 2 H), 7.14–7.30 (m, 4 H). – ¹³C NMR: δ = 30.5, 31.2, 31.5, 33.4, 68.6, 70.6, 112.1, 121.3, 127.6, 128.8, 130.9, 156.2. – +APCI MS: *m*/*z* [M+1]⁺ calcd. for C₂₄H₃₂S₄O₃: calcd. C 58.03, H 6.49, S 25.82; found C 58.12, H 6.40, S 25.91.

2,3;13,14-Dibenzo-1,8,15-trioxa-5,11,18,21,24-pentathiacyclohexacosane-2,13-diene (10)

The crude product was purified by TLC using ethyl acetate/hexane (1:4) as eluent to give **10** as a pale yellow solid. Yield 0.48 g (66%). – M. p. 72–73 °C. – ¹H NMR: $\delta = 2.70$ (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 2.90 (br, 8 H, SCH₂CH₂SCH₂CH₂S), 3.09 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.62 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.82 (s, 4 H, ArCH₂), 4.22 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 6.85 (d, J = 3 Hz, 2 H), 6.92 (t, J = 3 Hz, 2 H), 7.12–7.28 (m, 4 H). – ¹³C NMR: $\delta = 31.0, 31.2, 31.8, 32.5, 33.0, 68.9, 70.5, 112.0,$ 121.0, 127.5, 128.1, 130.5, 157.0. – +APCI MS: m/z [M+1]⁺ calcd. for C₂₆H₃₆S₅O₃: calcd. C 56.08, H 6.52, S 28.79; found C 56.20, H 6.61, S 28.91.

2,3;13,14-Dinaphthaleno-1,8,15-trioxa-5,11,18,21-tetrathiacyclotricosane-2,13-diene (**11**)

The crude product was washed with diethyl ether to give **11** as pale yellow solid. Yield 0.43 g (55%). – M. p. 152–153.5 °C. – ¹H NMR: $\delta = 2.75$ (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.00 (s, 4 H, SCH₂CH₂S), 3.11 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂CAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.30 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.96 (s, 4 H, ArCH₂), 4.50 (t, 2 H), 7.46 – 7.52 (m, 4 H), 7.68 (br, 4 H), 7.70 (s, 2 H), - ¹³C NMR: $\delta = 30.9$, 31.2, 32.6, 33.0, 68.5, 70.5 107.0, 123.8, 126.1, 126.3, 127.2, 128.6, 128.7, 128.9, 133.7, 154.6. – +APCI MS: m/z [M+1]⁺ calcd. for C₃₂H₃₆S₄O₃: 597.15; found 597.2 (100%). – Analysis for C₃₂H₃₆S₄O₃: calcd. C 64.39, H 6.08, S 21.49; found C 64.31, H 6.17, S 21.61.

2,3;13,14-Dinaphthaleno-1,8,15-trioxa-5,11,18,21,24pentathiacyclohexacosane-2,13-diene (**12**)

The crude product was washed with diethyl ether to give **12** as a colorless solid. Yield 0.61 g (72%). – M. p. 98–99.5 °C. – ¹H NMR: $\delta = 2.75$ (t,

 $J = 4 \text{ Hz}, 4 \text{ H}, \text{ OCH}_2CH_2\text{SCH}_2\text{CH}_2\text{OAr}, 2.91 \text{ (br}, 8 \text{ H}, \text{ SCH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{S}, 3.08 \text{ (t}, J = 3 \text{ Hz}, 4 \text{ H}, \text{ OCH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{OAr}, 3.68 \text{ (t}, J = 4 \text{ Hz}, 4 \text{ H}, \text{ OCH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{OAr}, 3.99 \text{ (s}, 4 \text{ H}, \text{ ArCH}_2), 4.31 \text{ (t}, J = 3 \text{ Hz}, 4 \text{ H}, \text{ OCH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{OAr}, 3.99 \text{ (s}, 4 \text{ H}, \text{ ArCH}_2), 4.31 \text{ (t}, J = 3 \text{ Hz}, 4 \text{ H}, \text{ OCH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{OAr}), 7.12 \text{ (s}, 2 \text{ H}), 7.29 - 7.48 \text{ (m}, 4 \text{ H}), 7.70 \text{ (br}, 4 \text{ H}), 7.72 \text{ (s}, 2 \text{ H}). - ^{13}\text{C} \text{ NMR: } \delta = 31.0, 31.2, 32.8, 33.0, 68.9, 70.8, 106.9, 124.0, 126.2, 126.5, 127.6, 128.9, 129.3, 154.3. - +APCI \text{ MS: } m/z \text{ [M+1]}^+ \text{ calcd. for } \text{C}_{34}\text{H}_{40}\text{S}_5\text{O}_3\text{: calcd. C} \text{ 62.16}, \text{ H} 6.14, \text{S} 24.40\text{; found C} 62.28, \text{H} 6.17, \text{ S} 24.51.}$

2,3;10,11-Dibenzo-1,12,18-trioxa-5,8,15,21-tetrathiacyclotricosane-2,10-diene (13)

The crude product was purified by TLC using ethyl acetate/hexane (1:4) as eluent to give **13** as pale yellow solid. Yield 0.25 g (38%). – M. p. 74–75 °C. – ¹H NMR: $\delta = 2.71$ (s, 4 H, SCH₂CH₂S), 2.88 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.02 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.75 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.75 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 6.82 (d, J = 4 Hz, 2 H), 6.91 (t, J = 4 Hz, 2 H), 7.12–7.25 (m, 4 H). – ¹³C NMR: $\delta = 30.0$, 31.4, 31.6, 31.9, 68.8, 71.5, 112.0, 121.0, 127.4, 128.5, 131.0, 156.2. – +APCI MS: m/z [M+1]⁺ calcd. for C₂₄H₃₂S₄O₃: 497.12; found 497.2 (100%). – Analysis for C₂₄H₃₂S₄O₃: calcd. C 58.03, H 6.49, S 25.82; found C 58.15, H 6.56, S 25.93.

2,3;13,14-Dibenzo-1,15,21-trioxa-5,8,11,18,24-pentathiacyclohexacosane-2,13-diene (14)

The crude product was purified by TLC using ethyl acetate/hexane (1:4) as eluent to give **14** as pale yellow solid. Yield 0.27 g (37%). – M. p. 68–69 °C. – ¹H NMR: $\delta = 2.64$ (br, 8 H, SCH₂CH₂SCH₂CH₂S), 2.85 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.20 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.71 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.71 (t, J = 4 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 6.82 (d, J = 2 Hz, 2 H), 6.92 (t, J = 2 Hz, 2 H), 7.12–7.29 (m, 4H). – ¹³C NMR: $\delta = 30.0, 31.9, 32.0, 32.2, 32.3, 68.1, 71.2, 111.8, 121.2, 127.5, 128.6, 130.9, 156.0. – +APCI MS: <math>m/z$ [M+1]⁺ calcd. for C₂₆H₃₆S₅O₃: calcd. C 56.08, H 6.52, S 28.79; found C 56.15, H 6.59, S 28.87.

2,3;10,11-Dinaphthaleno-1,12,18-trioxa-5,8,15,21-tetrathiacyclotricosane-2,10-diene (**15**)

 $\begin{array}{l} {\rm OCH_2CH_2SCH_2CH_2OAr), \ 3.91 \ (s, \ 4 \ H, \ ArCH_2), \ 4.30 \ (t, \\ J=4 \ Hz, \ 4 \ H, \ OCH_2CH_2SCH_2CH_2OAr), \ 7.08 \ (s, \ 2 \ H), \\ 7.28-7.45 \ (m, \ 4 \ H), \ 7.62-7.75 \ (br, \ 6 \ H). - {}^{13}{\rm C} \ NMR: \ \delta = \\ 31.0, \ 31.2, \ 32.0, \ 68.9, \ 71.4 \ 106.6, \ 124.0, \ 126.0, \ 126.3, \ 127.5, \\ 128.9, \ 129.0, \ 129.8, \ 133.9, \ 154.4. - + {\rm APCI} \ MS: \ m/z \ [M+1]^+ \\ {\rm calcd. \ for \ C_{32}H_{36}S_4O_3: \ 597.15; \ found \ 597.1 \ (100\%). - \ Anal- \\ {\rm yis \ for \ C_{32}H_{36}S_4O_3: \ calcd. \ C \ 64.39, \ H \ 5.99, \ S \ 21.49; \ found \\ {\rm C \ 64.46, \ H \ 6.01, \ S \ 21.57. \end{array}$

2,3;13,14-Dinaphthaleno-1,15,21-trioxa-5,8,11,18,24pentathiacyclohexacosane-2,13-diene (**16**)

The crude product was washed with benzene to give **16** as a colorless solid. Yield 0.37 g (43%). – M. p. 133 – 135 °C. – ¹H NMR: $\delta = 2.69$ (br, 8 H, SCH₂CH₂SCH₂CH₂S), 2.89 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.09 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.72 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 3.90 (s, 4 H, ArCH₂), 4.29 (t, J = 3 Hz, 4 H, OCH₂CH₂SCH₂CH₂OAr), 7.10 (s, 2 H), 7.28 – 7.42 (m, 4 H), 7.69 (br, 6 H). – ¹³C NMR: $\delta = 30.8$, 31.8, 32.1, 68.1, 71.4, 106.5, 124.0, 126.5, 126.6, 127.5, 128.8, 128.9, 129.7, 133.9, 154.5. – +APCI MS: m/z [M+1]⁺ calcd. for C₃₄H₄₀S₅O₃: calcd. C 62.16, H 6.14, S 24.40; found C 62.11, H 6.09, S 24.48.

2,3;13,14-Dibenzo-1,8,15,21-tetraoxa-5,11,18,24-tetrathiacyclohexacosane-2,13-diene (**17**)

The crude product was purified by TLC using ethyl acetate/hexane (1:4) as eluent to give **17** as pale yellow solid.

- W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. Huffman, Nature 347, 354 (1990).
- [2] E. C. Constable, Angew. Chem. Int. Ed. Engl. 33, 2269 (1994).
- [3] T. Braun, Fullerene Sci. Technol. 5, 615 (1997).
- [4] S. Shinkai, A. Ikeda, Pure Appl. Chem. 71, 275 (1999).
- [5] S. Mizyed, P.E. Georghiou, M. Ashram, J. Chem. Soc., Perkin Trans 2, 277 (2002).
- [6] J. L. Atwood, G. A. Koutsantonis, C. L. Ratson, Nature 368, 229 (1994).
- [7] T. Suzuki, K. Nakashima, S. Shinkai, Chem. Lett. 699 (1994).
- [8] T. Andersson, G. Westman, G. Stenhagen, M. Sundahi, O. Wennerstorm, Tetrahedron Lett. 36, 597 (1995).
- [9] M. J. Hardie, P. D. Godfrey, L. C. Ratson, Chem. Eur. J. 5, 1828 (1999).
- [10] J.-Y. Zheng, K. Tashiro, Y. Hirabayashi, K. Kinbara, K. Saigo, T. Aida, S. Sakamoto, K. Yamaguchi, Angew. Chem. Int. Ed. 40, 1858 (2001).

Yield 0.27 g (38%). – M. p. 54–55 °C. – ¹H NMR: δ = 2.69 (t, *J* = 3 Hz, 4 H), 2.90 (t, *J* = 3 Hz, 4 H), 3.01 (t, *J* = 3 Hz, 4 H), 3.61 (t, *J* = 3 Hz, 4 H), 3.72 (t, *J* = 4 Hz, 4 H), 3.81 (s, 4 H, Ar*CH*₂), 4.18 (t, *J* = 3 Hz, 4 H), 6.81 (d, *J* = 2 Hz, 2 H), 6.90 (t, *J* = 2 Hz, 2 H), 7.18 (d, *J* = 2 Hz, 2 H), 7.23 (t, *J* = 2 Hz, 2 H). – ¹³C NMR: δ = 31.2, 32.0, 32.9, 33.0, 69.9, 71.5, 72.3, 113.0, 122.4, 128.8, 129.5, 130.6, 157.7. – +APCI MS: *m*/z [M+1]⁺ calcd. for C₂₆H₃₆S₄O₄: 541.13; found 541.2 (100%). – Analysis for C₂₆H₃₆S₄O₄: calcd. C 57.74, H 6.71, S 23.71; found C 57.65, H 6.66, S 23.63.

2,3;13,14-dinaphthaleno-1,8,15,21-tetraoxa-5,11,18,24tetrathiacyclohexacosane-2,13-diene (**18**)

The crude product was washed with diethyl ether to give **18** as a pale yellow solid. Yield 0.63 g (76%). – M. p. 79–80 °C. – ¹H NMR: $\delta = 2.72$ (t, J = 3 Hz, 4 H), 2.90 (t, J = 3 Hz, 4 H), 3.09 (t, J = 3 Hz, 4 H), 3.60 (t, J = 3 Hz, 4 H), 3.75 (t, J = 4 Hz, 4 H), 3.94 (s, 4 H, Ar*CH*₂), 4.29 (t, J = 3 Hz, 4 H), 7.09 (s, 2 H), 7.25–7.42 (m, 4 H), 7.66 (br, 6 H). – ¹³C NMR: $\delta = 31.0, 31.1, 31.3, 32.0, 68.8, 70.9, 71.2, 116.9, 124.0, 126.1, 126.5, 127.5, 128.6, 128.8, 129.5, 133.8, 154.9. – +APCI MS: <math>m/z$ [M+1]⁺ calcd. for C₃₄H₄₀S₄O₄: 641.18; found 641.2 (100%). – Analysis for C₃₄H₄₀S₄O₄: calcd. C 63.72, H 6.29, S 20.01; found C 63.80, H 6.23, S 20.11.

Acknowledgement

I thank Ms. Linda Winsor at Memorial University of Newfoundland, Canada for recording the mass spectra reported herein.

- [11] M. Numata, A. Ikeda, C. Fukuhara, S. Shinkai, Tetrahedron Lett. 40, 6945 (1999).
- [12] O. Ermer, C. Robke, J. Am. Chem. Soc. 115, 10077 (1993).
- [13] A. Ikeda, H. Hudzu, M. Yoshimura, S. Shinkai, Tetrahedron 56, 1825 (2000).
- [14] N. Komatsu, Org. Biomol. Chem. 204 (2003).
- [15] M. Dudič, P. Lhoták, I. Stibor, H. Petřičková, K. Lang, New J. Chem. 28, 85 (2004).
- [16] A. Saha, S.K. Nayak, S. Chottopadhyay, A.K. Mukherjee, J. Phys. Chem. B 107, 11889 (2003).
- [17] K. Datta, M. Banetjee, A.K. Mukherjee, J. Phys. Chem. B 108, 16100 (2004).
- [18] P.E. Georghiou, M. Ashram, H. J. Clase, N. J. Bridson, J. Org. Chem. 63, 1819 (1998).
- [19] M. Ashram, S. Mizyed, P. E. Georghiou, J. Org. Chem. 66, 1473 (2001).
- [20] M. Ashram, J. Chem. Soc., Perkin Trans 2 1662 (2002).
- [21] J. Buter, R. M. Kellogg, J. Org. Chem. 46, 4481 (1981).