Oxotellurate(IV) der Lanthanide: II. Die isotype Reihe M_2 Te₅O₁₃ (M = Dy – Lu)

Oxotellurates(IV) of Lanthanides: II. The Isotypic Series M_2 Te₅O₁₃ (M = Dy - Lu)

Steffen F. Meier und Thomas Schleid

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart Sonderdruckanforderungen an Prof. Dr. Th. Schleid. Fax: +49(0)711/685-4241. E-mail: schleid@iac.uni-stuttgart.de

Z. Naturforsch. 60b, 720-726 (2005); eingegangen am 1. März 2005

For the shortly discovered formula type M_2 Te₅O₁₃ (triclinic, $P\bar{1}$), the establishment of an isostructural series in the last third of the lanthanide family (M = Dy-Lu) was possible. The excessive formula unit TeO₂ additional to the well-known composition M_2 Te₄O₁₁ (monoclinic, C2/c) leads to the slicing of the $[M_2O_{10}]^{14-}$ layers which are typical for the tellurium-oxide poorer compounds. By coupling together the bicapped trigonal prismatic (M1, CN = 8) and the pentagonal bipyramidal (M2, CN = 7) lanthanide-oxygen polyhedra *via* edges, $[M_4O_{20}]^{28-}$ bands are formed stretching along the *a* axis and piling up to a primitive rod-packing. The linkage of these bands occurs parallel to the (010) plane *via* Te3 as well as *via* Te4 parallel to (100). Besides the usual 3+1 coordination, two of the five crystallographically independent tellurium sites are coordinated regularly fourfold (d(Te - O) $\approx 186 - 213$ pm) and even 3+2-fold by oxygen atoms. The tellurium-oxygen polyhedra form corrugated layers running parallel to (101) which follow so close to each other that the tellurium-oxygen partial structure appears to be almost three-dimensional at a passing glance. As in M_2 Te₄O₁₁-type representatives, the non-bonding electron pair (*lone pair*) of each Te⁴⁺ cation shows stereochemical activity which always appears to flock together in large tellurium neighboured positions.

Key words: Lanthanides, Oxotellurates(IV), Crystal Structures

Einleitung

Als erster Vertreter des neuen Formeltyps M2Te5O13 für die Oxotellurate(IV) der dreiwertigen Lanthanide trat die champagnerfarbene und hydrolysestabile Holmiumverbindung in einkristalliner Form in Erscheinung, die im triklinen Kristallsystem (Raumgruppe $P\bar{1}, Z = 2$) strukturell charakterisiert werden konnte [1,2]. Oxotellurate(IV) mit dieser Zusammensetzung entstanden allerdings erst bei der Umsetzung von Lanthanidsesquioxid (M_2O_3) mit Tellurdioxid (TeO₂) ab einem molaren Verhältnis von 1:7, dann jedoch annähernd phasenrein [1, 3]. Wird versucht, sie direkt mit einem molaren Verhältnis der Edukte von 1:5 zu synthetisieren, wie es die Summenformel M_2 Te₅O₁₃ suggeriert, so misslingt dies. Statt dessen bilden sich hierbei ausschließlich die M_2 Te₄O₁₁-Vertreter [4–11], die somit gegenüber M_2 Te₅O₁₃ die wohl bevorzugten Verbindungen zu sein scheinen. Da sich für die Oxotellurate(IV) vom Formeltyp M_2 Te₄O₁₁ (M = La - Nd, Sm-Yb; Ausnahme: Lu [11]) [8] vor allem die Vertreter des vorderen Bereiches der leichten Lanthaniden als sehr gut zugänglich erwiesen haben, stellte sich zwanglos die Frage, ob die Existenzgrenze der neuen Zusammensetzung (M_2 Te₅O₁₃) nun von Ho₂Te₅O₁₃ [1, 2] aus auch bis an die beiden Enden des Bereiches der 4f-Elemente ausgeweitet werden könnte. In Richtung der schwereren Lanthanide (M = Er - Lu) konnte dieses Vorhaben verwirklicht werden, in Richtung des Lanthans gelang die Ausweitung des Existenzbereiches jedoch nur noch bis hin zum direkten leichteren Nachbarn des Holmiums, nämlich für Dy₂Te₅O₁₃.

Experimenteller Teil

Pulvergemenge aus M_2O_3 (M = Dy-Lu) und TeO₂ im molaren Verhältnis 1:10 wurden mit dem 6-fachen Überschuss an CsCl als Flussmittel in evakuierten Kieselglasampullen (Restdruck *ca.* 10⁻⁵ mbar) bei 800 °C 15 Tage lang getempert. Die sich anschließende Abkühlung erfolgte mit einer Geschwindigkeit von 0,1 °C/min. Nach dem Öffnen der Ampullen konnten im Regulus große rechteckige und je nach Lanthanid-Trikation farbige Plättchen (M = Dy, Yb, Lu:

0932-0776 / 05 / 0700-0720 \$ 06.00 © 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

688,04(5)

685,78(5)

Yb₂Te₅O₁₃

Lu2Te5O13

a) Kristallog	graphische L	Daten. Krista	llsystem: trik	lin, Raumgr	uppe: P1 (Na	r. 2), Zahl de	er Formeleinheit	en: $Z = 2$.	
					Gitterkonstan	ten			
Verbindung	а	b	с	α	β	γ	$V_{\rm m}{}^{\rm b}$	$D_{\rm x}{}^{\rm c}$	$r(M^{3+})^{d}$
	(pm)	(pm)	(pm)	(°)	(°)	(°)	$(\text{cm}^3 \cdot \text{mol}^{-1})$	$(g \cdot cm^{-3})$	(pm)
Dy ₂ Te ₅ O ₁₃	698,12(5)	863,71(7)	1058,46(9)	89,058(8)	86,842(8)	75,106(8)	185,43(4)	6,315(5)	116,7
Ho2Te5O13	695,43(5)	862,68(7)	1056,72(9)	89,003(8)	86,810(8)	75,049(8)	184,14(4)	6,386(5)	115,5
Er2Te5O13	692,85(5)	861,73(7)	1055,07(9)	88,912(8)	86,778(8)	74,991(8)	182,91(4)	6,465(5)	114,4
Tm ₂ Te ₅ O ₁₃	690,39(5)	860,82(7)	1053,51(9)	88,823(8)	86,746(8)	74,934(8)	181,75(4)	6,514(5)	113,4

86.713(8)

86,681(8)

74.876(8)

74,818(8)

88,745(8)

88,669(8)

Tab. 1. Kristallographische Daten für die Lanthanid(III)-Oxotellurate(IV) M_2 Te₅O₁₃ (M = Dy - Lu) und ihre Bestimmung^a.

^a Weitere Einzelheiten zu den Kristallstrukturbestimmungen können beim Fachinformationszentrum (FIZ) Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern 413664 (Dy2Te5O13), 413665 (Ho2Te5O13), 413666 (Er2Te5O13), 413667 (Tm₂Te₅O₁₃), 413668 (Yb₂Te₅O₁₃) und 413669 (Lu₂Te₅O₁₃) angefordert werden; ^b molares Volumen; ^c berechnete (röntgenographische) Dichte; ^d Radius des M^{3+} -Kations für CN = 8 (nach Shannon [14]).

b) Messparameter. Messgerät: Kappa-CCD (Fa. Nonius), verwendete Strahlung: Mo-K_{α} (λ = 71,07 pm; Graphit-Monochromator).

860.01(7)

859,27(7)

1052,05(9)

1050,68(9)

c) Datenreduktion. Datenkorrekturen mittels Untergrund-, Polarisations- und Lorentzfaktoren; numerische Absorptionskorrektur: Programm X-SHAPE [15].

180.65(4)

179,61(4)

Verbindung	M	essberei	ch	Mess- grenze	<i>F</i> (000)	Absorptions- koeffizient	Verbindung	Zahl der gemessenen	davon symmetrie-	<i>R</i> _{int}	Rσ	Zahl der Reflexe mit
	$\pm h_{\rm max}$	$\pm k_{\rm max}$	$\pm l_{\max}$	θ_{\max} (°)		$(\mu / { m mm^{-1}})$		Reflexe	unabhängig			$ F_o \ge 4\sigma(F_o)$
Dy ₂ Te ₅ O ₁₃	9	11	13	27,6	992	23,7	Dy ₂ Te ₅ O ₁₃	18953	2832	0,050	0,029	2708
Ho ₂ Te ₅ O ₁₃	11	13	17	35,0	996	24,6	Ho2Te5O13	42421	5370	0,058	0,030	5147
$Er_2Te_5O_{13}$	9	12	14	30,1	1000	25,6	Er2Te5O13	31210	3561	0,071	0,028	3512
$Tm_2Te_5O_{13}$	8	11	13	27,5	1004	26,5	Tm ₂ Te ₅ O ₁₃	20187	2766	0,058	0,028	2718
Yb ₂ Te ₅ O ₁₃	8	11	13	27,5	1008	27,5	Yb ₂ Te ₅ O ₁₃	19782	2753	0,043	0,027	2672
Lu ₂ Te ₅ O ₁₃	11	14	17	36,4	1012	28,5	$Lu_2Te_5O_{13}$	42293	5807	0,091	0,052	5634

Verbindung	R_1	R_1 mit	wR_2	Goodness	Extinktion	Restelekt	ronendichte
		$ F_o \ge 4\sigma(F_o)$		of Fit		$(\rho \text{ in } e^{-})$	$\cdot 10^{6} \text{ pm}^{-3}$)
				(GooF)	(g)	max.	min.
Dy ₂ Te ₅ O ₁₃	0,026	0,024	0,058	1,089	0,0029(1)	1,81	-2,00
Ho ₂ Te ₅ O ₁₃	0,028	0,026	0,064	1,111	0,0184(3)	2,98	-3,64
Er ₂ Te ₅ O ₁₃	0,025	0,025	0,058	1,114	0,0114(2)	2,23	-2,54
Tm ₂ Te ₅ O ₁₃	0,022	0,021	0,051	1,093	0,0069(1)	1,19	-1,50
Yb ₂ Te ₅ O ₁₃	0,022	0,021	0,049	1,080	0,0162(2)	1,42	-1,83
Lu ₂ Te ₅ O ₁₃	0,045	0,043	0,084	1,101	0,0241(7)	6,81	-5,97

d) Strukturlösung und -verfeinerung.

6.599(5)

6,658(5)

Programme SHELXS-97 und SHELXL-97 [16]; Streufaktoren nach International Tables, Vol. C [17].

farblos, M = Ho: honigfarben, M = Er: blassrosa, M = Tm: fahlgrün) in lamellenartiger Anordnung, eingebettet in eine graue Matrix gesichtet werden, die sich in der nachfolgenden Untersuchung tatsächlich als Vertreter des Formeltyps M_2 Te₅O₁₃ herausstellten. Oberhalb des Regulus rekristallisierte als Sublimat überschüssiges TeO2 [12, 13] in Form von einzelnen farblosen Polyedern und Spießen.

Vergleicht man zum Beispiel das gemessene Pulverdiffraktogramm (Stadi P-Diffraktometer, Fa. Stoe; Cu-K $_{\alpha 1}$ -Strahlung, $\lambda = 154,06$ pm, Germanium-Monochromator) einer mit Wasser gewaschenen Probe aus dem Regulus mit einem simulierten von Lu2Te5O13, so ist an den intensitätsstarken Peaks, die nicht Lu2Te5O13 zugeordnet werden können, abzuleiten, dass die hellgraue Matrix des Schmelzkuchens ebenfalls aus überschüssigem TeO2 besteht. Die Gegenüberstellung in Abb. 1 zeigt zudem anschaulich das für die M2Te5O13-Vertreter charakteristische Peaktriplett bei $27,2^{\circ} \leq 2\theta \leq 28,2^{\circ}$ (2 θ -Werte hier speziell für M = Lu), durch welches auch isotype Pulverproben dieser Zusammensetzung immer recht sicher anhand ihres Pulverdiffraktogramms identifiziert werden können. Aus dem Schmelzkuchen wurde je einer der hydrolysestabilen, plattenförmigen Individuen der isotypen M_2 Te₅O₁₃-Serie (M =Dy-Lu) für Einkristalluntersuchungen präpariert und auf einem Kappa-CCD-Diffraktometer (Fa. Nonius) gemessen. Die kristallographischen Daten und weitere Einzelheiten zu den Röntgenstrukturanalysen sind in den Tabellen 1 bis 4 zusammengestellt.

Strukturbeschreibung und Diskussion

In der triklinen Kristallstruktur des Verbindungstyps M_2 Te₅O₁₃ (M = Dy - Lu) besetzt jedes Atom der Sum-

112.5

111.7

Tab.	2. A	tomkoordin	aten und	Koeffiziente	en der isot	ropen Aus	lenkungspara	umeter 1	Jeq =	$1/3 \ [U_{11}(a_0)]$	$(a^*)^2 + U_{22}$	$(bb^*)^2 + U$	$_{33}(cc^*)^2 +$	$2U_{12}aba^*b$	$\cos \gamma +$
$2U_{13}$	aca^*c	$\cos\beta + 2t$	$^{2}_{23}bcb^{*}c^{*}cc$	$\cos \alpha$] (in pm	²) für M_2 Te	${}_{5}\mathrm{O}_{13}~(M=1)$	Oy−Lu; alle	Teilcher	ı besetz	en die allge	emeine Punl	ctlage 2i (x.	, y, z)).		
		M = Dy	M = Ho	M = Er	M = Tm	$\mathbf{M} = \mathbf{Y}\mathbf{b}$	M = Lu			M = Dy	M = Ho	M = Er	M = Tm	$\mathbf{M} = \mathbf{Y}\mathbf{b}$	M = Lu
M^{1}	x/a	0,44617(4)	0,44649(2)	0,44710(4)	0,44720(4)	0,44744(4)	0,44795(4)	04	x/a	0,3128(6)	0,3125(5)	0,3117(6)	0,3130(6)	0,3126(6)	0,3131(6)
	$\frac{y/b}{z/c}$	0,4/420(3) 0.82097(2)	0,47382(2) 0.82079(1)	0,4/345(3) 0.82078(2)	0,47270(3) 0.82039(2)	0,47206(3) 0.82012(2)	0.47161(3) 0.81979(2)		y/b	(c)13/1(c) (0.2885(4)	0.7369(4) 0.2880(3)	0,73/0(5) 0.2888(4)	(c)c/2//0 (0.2875(4)	0,7374(5)	0,7378(5)
	U_{ea}	90(1)	69(1)	55(1)	63(1)	72(1)	99(1)		U_{ea}	137(8)	102(5)	95(7)	99(8)	99(8)	134(6)
M_2	x/a	0,00321(4)	0,00259(2)	0,00260(4)	0,00127(4)	0,00079(4)	0,00024(4)	05	x/a	0,6625(6)	0,6621(5)	0,6622(6)	0,6611(6)	0,6608(6)	0,6608(6)
	y/b	0,26264(3)	0,26286(2)	0,26224(3)	0,26147(3)	0,26052(3)	0,26038(3)		y/b	0,4889(5)	0,4895(4)	0,4893(5)	0,4868(5)	0,4904(5)	0.4907(5)
	z/c	0,76101(2)	0,76117(1)	0,76052(2)	0,76050(2)	0,76012(2)	0,75995(2)		z/c	0,3837(4)	0,3837(3)	0,3830(4)	0,3830(4)	0,3828(4)	0,3826(4)
	U_{eq}	102(1)	78(1)	83(1)	70(1)	78(1)	109(1)		U_{eq}	167(9)	131(5)	129(7)	133(8)	133(8)	158(7)
Te1	x/a	0,43459(5)	0,43553(4)	0,43517(5)	0,43707(5)	0,43786(5)	0,43852(5)	90	x/a	0,0629(6)	0,0632(5)	0,0632(6)	0,0639(6)	0,0638(6)	0,0632(6)
	y/b	0.90371(4)	0.90367(3)	0,90427(4)	0,90450(4)	0.90485(4)	0.90484(4)		y/b	0,2657(5)	0,2647(4)	0.2648(5)	0,2653(5)	0,2649(5)	0,2652(5)
	2/C	(c)0c70c,0	(2)02200,0 (1)28	(c)0170C/0	(c)c/10c,0	(c) 44 (c) 82(1)	(c)c710c,0		2/C	(+)CUSU210	(c)66/7/0 115/6/	0,2800(4) 120(8)	0,2801(4)	0,2798(4)	0,2798(4)
CoT.	U eq	0 12007(5)		0 121 10/5/	0 17738(5)	0.17210(5)	017270/5	5	U eq	1/0(2) 0.2441(6)	0.3447(5)	(0)2151(6)	0 2464(6)	140(0) 0 2465(6)	100(1) 0 2166(6)
701	$\frac{q}{x}$	0.12007(J)	0,12060(4)	0,12115(3)	0,34851(4)	0.34915(4)	$(C) \leq l \leq 2100$	5	$\frac{q}{r}$	0.9835(5)	(0.9847(4))	0.9853(5)	0.9855(5)	0.9860(5)	0.9862(5)
	2/2	0.11199(3)	0.11160(2)	0.11097(3)	0.11017(3)	0.10978(3)	0.10918(3)		2/2	0.1250(4)	0.1240(3)	0.1241(4)	0.1231(4)	0.1231(4)	0.1226(4)
	U_{ea}	95(1)	74(1)	60(1)	64(1)	72(1)	102(1)		U_{aa}	148(8)	128(5)	114(7)	116(8)	120(8)	152(7)
Te3	x/a	0,27770(5)	0,27694(4)	0,27663(5)	0,27598(5)	0,27552(5)	0,27472(5)	08	x/a	0,0502(6)	0,0488(5)	0,0471(6)	0,0464(6)	0,0457(6)	0,0440(6)
	y/b	0,39082(4)	0,39125(3)	0,39199(4)	0,39220(4)	0,39259(4)	0,39291(4)		y/b	0,3482(5)	0,3483(4)	0,3484(5)	0,3490(5)	0,3492(5)	0,3494(5)
	z/c	0,48507(3)	0,48515(2)	0,48481(3)	0,48479(3)	0,48478(3)	0,48464(3)		z/c	0,5629(4)	0,5634(3)	0,5642(4)	0,5651(4)	0,5654(4)	0,5653(4)
	U_{eq}	103(1)	81(1)	67(1)	70(1)	78(1)	104(1)		U_{eq}	171(9)	135(5)	135(7)	128(8)	129(8)	154(7)
Te4	x/a	0,84494(5)	0,84395(4)	0,84290(5)	0,84240(5)	0,84165(5)	0,84100(5)	60	x/a	0,4632(6)	0,4625(5)	0,4630(6)	0,4627(6)	0,4616(6)	0,4614(6)
	y/b	0,19467(4)	0,19460(3)	0, 19439(4)	0, 19485(4)	0,19514(4)	0,19512(4)		y/b	0,1915(5)	0, 1914(4)	0,1917(5)	0,1915(5)	0,1915(5)	0, 1914(5)
	z/c	0,36359(3)	0,36330(2)	0,36316(3)	0,36335(3)	0,36330(3)	0,36304(3)		z/c	0.5191(4)	0,5196(3)	0.5185(4)	0.5185(4)	0.5187(4)	0.5190(4)
	U_{eq}	110(1)	87(1)	77(1)	79(1)	87(1)	113(1)		U_{eq}	165(9)	133(5)	121(7)	118(8)	143(8)	158(7)
Te5	x/a	0,70947(5)	0,70941(4)	0,70969(5)	0,70922(5)	0,70942(5)	0,70957(5)	010	x/a	0,1221(6)	0,1214(5)	0,1232(6)	0,1248(6)	0,1257(6)	0,1261(6)
	y/b	0,11956(4)	0,11993(3)	0,11997(4)	0,12041(4)	0,12066(4)	0,12084(4)		y/b	0,4917(5)	0,4921(4)	0,4925(5)	0,4924(5)	0,4933(5)	0,4946(5)
	z/c	0,02434(3)	0,02453(2)	0,02435(3)	0,02488(3)	0,02487(3)	0,02489(3)		z/c	0,8908(4)	0,8916(3)	0,8924(4)	0,8932(4)	0,8945(4)	0,8954(4)
	U_{eq}	94(1)	73(1)	58(1)	63(1)	71(1)	99(1)		U_{eq}	150(8)	118(5)	122(7)	117(8)	132(8)	152(7)
0	x/a	0,3328(6)	0,3318(5)	0,3313(6)	0,3291(6)	0,3280(6)	0,3270(6)	011	x/a	0,0610(6)	0,0599(5)	0,0588(6)	0,0587(6)	0,0579(6)	0,0573(6)
	y/b	0,2213(5)	0,2216(4)	0,2233(5)	0,2228(5)	0,2232(5)	0,2246(5)		y/b	0,8222(5)	0,8217(4)	0,8228(5)	0,8224(5)	0,8224(5)	0,8229(5)
	z/c	0,7775(4)	0,7781(3)	0,7778(4)	0,7783(4)	0,7787(4)	0,7790(4)		z/c	0,0357(4)	0,0363(3)	0,0377(4)	0,0382(4)	0,0394(4)	0,0397(4)
	U_{eq}	153(8)	122(5)	116(7)	121(8)	129(8)	145(7)		U_{eq}	154(8)	122(5)	120(7)	110(8)	125(8)	160(7)
02	x/a	0,5374(6)	0,5373(5)	0,5365(6)	0,5348(6)	0,5341(6)	0,5339(6)	012	x/a	0,6720(6)	0,6702(5)	0,6680(6)	0,6665(6)	0,6646(6)	0,6632(6)
	y/b	0,3265(5)	0,3267(4)	0,3276(5)	0,3282(5)	0,3289(5)	0,3286(5)		y/b	0,2557(5)	0,2566(4)	0,2577(5)	0,2589(5)	0,2606(5)	0,2614(5)
	z/c	0,0024(4)	0,0024(3)	0,0017(4)	0,0013(4)	0,9999(4)	0,0009(4)		z/c	0,2321(4)	0,2330(3)	0,2327(4)	0,2324(4)	0,2323(4)	0,2330(4)
	U_{eq}	129(8)	706(5)	(1)16	107(8)	107(8)	134(6)		U_{eq}	172(9)	145(6)	150(8)	139(8)	142(8)	166(7)
03	x/a	0,2357(6)	0,2357(5)	0,2352(6)	0,2342(6)	0,2340(6)	0,2327(6)	013	x/a	0,0605(6)	0,0626(5)	0,0647(6)	0,0647(6)	0,0660(6)	0,0690(6)
	$\frac{y/b}{2}$	0,4922(5) 0.1860(4)	0,4932(4) 0.1868(3)	0,4935(5) 0.1876(4)	0,4960(5) 0.1867(A)	0,4973(5) 0.1871(4)	0,4988(5) 0.1871(4)		$\frac{y/b}{z/c}$	0,0175(5)	0,0174(4)	0,0173(5)	0,0180(5)	0,0173(5)	0,0173(5)
	2/2 11.00	0,1007(8)	109(5)	0,10/U(+) 86(7)	0,100/(7) 91(7)	0,10/1(8) 101(8)	0,10/1(7) 124(6)		2/2 11=2	0,0044(4) 269(11)	0,000000 228(7)	0,0000(+) 235(9)	225(10)	0,00/0(4) 238(9)	0,0000(1) 228(8)

Tab. 3. Ausgewählte interatomare Abstände (pm) und Winkel (°) in den Lanthanid(III)-Oxotelluraten(IV) M_2 Te₅O₁₃ (M =Dy – Lu).

	M = Dy	M = Ho	$M = \mathrm{Er}$	M = Tm	M = Yb	M = Lu
M1-O10	230,9(4)	230,8(3)	229,3(7)	227,7(4)	226,8(4)	226,2(5)
M1-O3	231,0(4)	229,7(3)	228,8(6)	228,1(4)	227,2(4)	226,7(5)
M1-02	231,5(4)	230,9(3)	229,0(7)	227,8(4)	225,7(4)	226,3(5)
M1-05	232,5(4)	231,8(3)	230,9(6)	229,8(4)	229,0(4)	228,2(5)
M1-012 M1_04	233,0(4) 240,4(4)	232,8(3) 220,2(2)	231,0(0) 230,0(6)	230,0(4) 237,1(4)	229,2(4) 226,2(4)	228,0(5) 225,1(5)
M1-04 M1-01	240,4(4) 256 3(4)	259,2(3) 255 8(3)	259,0(0) 254.4(7)	257,1(4) 254 6(4)	250,2(4) 253.9(4)	253,1(3) 252 6(6)
M1=01 M1=02'	250,5(4) 258 9(4)	255, 8(3) 258 9(3)	259.0(7)	254,0(4) 259 8(4)	255,9(4) 261 0(4)	260.8(6)
M2-013	221.0(4)	220.3(3)	219.2(6)	217.5(4)	216.7(4)	215.9(5)
M2-08	224,7(4)	223.8(3)	221.9(6)	221.1(4)	220.4(4)	219,9(5)
M2-O1	225,2(4)	224,1(3)	223,2(6)	221,9(4)	220,9(4)	220,1(5)
M2-O4	229,5(4)	227,9(3)	226,6(6)	225,3(4)	223,7(4)	223,0(5)
M2-011	231,9(4)	230,4(3)	229,1(6)	227,7(4)	226,0(4)	225,4(5)
M2-O3	238,6(4)	237,0(3)	236,4(6)	234,3(4)	233,4(4)	231,6(5)
M2-010	274,8(4)	274,9(3)	276,9(7)	278,6(4)	281,2(4)	282,9(6)
Te1-04	186,2(4)	186,6(3)	180,8(0)	186, /(4)	18/, 5(4)	186,9(5)
Tel_01	187,0(4) 206 6(4)	180,0(5) 207 1(3)	187,0(0) 206 5(7)	180,0(4) 206 7(4)	180,3(4) 206.2(4)	180,0(3) 206,2(5)
Te1_09	200,0(4) 213 2(4)	207,1(3) 212 5(3)	200,3(7) 213 3(7)	200,7(4) 213 0(4)	200,2(4) 212 8(4)	200,2(3) 212 2(5)
Te2-03	186.3(4)	186.4(3)	186.5(6)	186.6(4)	186.8(4)	187.1(5)
Te2-O10	189,4(4)	188.6(3)	188.7(6)	189.2(4)	188.8(4)	188.2(5)
Te2-O6	196,5(4)	196,4(3)	196,8(7)	197,4(4)	197,6(4)	198,0(5)
Te2-010'	263, 6(4)	262,0(3)	260,2(7)	257,9(4)	255,9(4)	254,6(6)
Te2-011	272,5(4)	271,9(3)	272,6(7)	272,8(4)	273,4(4)	273,4(6)
Te3-08	186,6(4)	186,7(3)	187,6(6)	187,3(4)	187,1(4)	187,1(5)
Te3-O5	187,5(4)	187,1(3)	187,5(6)	187,5(4)	187,3(4)	187,3(5)
Te3-09	191,2(4)	191,1(3)	191,0(6)	190,8(4)	190,5(4)	190,5(5)
Te4_012	283,1(4) 185 0(4)	281,2(3) 185.0(2)	2/9, I(7) 184 5(6)	277,3(4) 185 5(4)	2/0,0(4) 185 2(4)	2/3,9(0) 185.0(5)
Te4_013	185,0(4) 187 3(4)	185,0(3) 186 2(3)	186 5(6)	185,5(4) 186.9(4)	185,2(4) 187 1(4)	185,0(5) 186 3(5)
Te4-06	107,3(4) 194.4(4)	194.3(3)	194.3(7)	194.5(4)	107,1(4) 194.1(4)	193.7(5)
Te4-05	254,0(4)	253,9(3)	253,2(7)	252,9(4)	252,6(4)	252,4(6)
Te5-011	187,5(4)	187,9(3)	187,7(6)	187,8(4)	187,9(4)	187,5(5)
Te5–O2	189,9(4)	189,3(3)	189,8(6)	189,9(4)	190,3(4)	189,5(5)
Te5–O7	192,7(4)	192,4(3)	192,9(7)	192,8(4)	193,1(4)	192,8(5)
Te5-012	248,0(4)	248,5(3)	248,5(7)	247,8(4)	248,0(4)	248,6(6)
01-Te1-04	90,3(2)	90,2(1)	89,8(3)	89,8(2)	89,7(2)	89,3(3)
01 - 1e1 - 07	87,5(2)	87,4(1)	87,0(3)	87,5(2)	87,0(2)	8/,0(3) 00.1(3)
04-Te1-07	89,7(2) 894(2)	89,9(1) 89,3(1)	89.8(3)	90,1(2) 89 3(2)	90,1(2) 89 4(2)	89 3(3)
04-Te1-09	88.9(2)	89.0(1)	88.6(3)	88.8(2)	88.7(2)	88.7(3)
07-Te1-09	176,7(2)	176,8(1)	176,9(3)	176,9(2)	176,9(2)	177,0(3)
O3-Te2-O6	89,6(2)	89,9(1)	89,3(3)	89,4(2)	89,4(2)	89,3(3)
O3-Te2-O10	89,4(2)	89,2(1)	89,4(3)	89,3(2)	89,6(2)	89,5(3)
O6-Te2-O10	94,9(2)	95,1(1)	94,9(3)	94,7(2)	94,7(2)	94,4(3)
010'-Te2-010	73,6(2)	73,3(1)	73,5(3)	73,8(2)	73,7(2)	73,6(3)
010'-Te2-011	77,2(2)	77, I(1)	77,4(3)	77,6(2)	77,8(2)	78,2(3)
010 - 1e2 - 05 $010' T_{e2} - 06$	$91, \delta(2)$ 168 $A(2)$	$91, \delta(1)$ 168 3(1)	91,9(3) 168 $4(3)$	91,7(2) 168 $4(2)$	91,0(2) 168 3(2)	91,4(3)
011-Te2-010	85 1(2)	850(1)	84.9(3)	845(2)	84.0(2)	83 8(3)
011-Te2-06	100.6(2)	100.5(1)	100.5(3)	100.4(2)	100.2(2)	100.1(3)
011-Te2-O3	168,7(2)	168,6(1)	169,0(3)	168,8(2)	168,8(2)	168,8(3)
O5-Te3-O8	97,6(2)	97,7(1)	97,4(3)	97,3(2)	97,3(2)	97,3(3)
O5-Te3-O8	98,2(2)	98,0(1)	98,0(3)	97,8(2)	97,8(2)	97,4(3)
O8-Te3-O9	98,8(2)	98,5(1)	98,4(3)	98,3(2)	98,0(2)	97,9(3)
08'-Te3-O5	88,2(2)	88,4(1)	88,6(3)	89,0(2)	89,2(2)	89,2(3)
08'-1e3-08	71,7(2)	72, I(1)	72,0(3)	72,8(2)	73,1(2)	$\frac{1}{3}, \frac{3}{3}(3)$
08 -1e3-09 06 To4 012	109,3(2) 05.6(2)	109,4(1) 05.8(1)	109,3(3) 05.8(3)	109, 5(2) 05.0(2)	109,4(2) 05.8(2)	109,0(3)
06-Te4-012	95,0(2) 95,4(2)	95,0(1) 95,2(1)	95,6(5)	95,9(2) 95,4(2)	95,0(2) 95,3(2)	90,0(3)
012-Te4-013	96.3(2)	96.0(1)	96.0(3)	95.8(2)	95,8(2)	95.6(3)
05-Te4-06	86.8(2)	86.9(1)	86.6(3)	86.6(2)	86.6(2)	86.3(3)
05-Te4-012	69,7(2)	69,9(1)	69,4(3)	69,3(2)	69,2(2)	69,0(3)
05-Te4-013	166,0(2)	165,6(1)	165,4(3)	165,2(2)	165,0(2)	164,6(3)
O2-Te5-O7	99,5(2)	99,7(1)	99,8(3)	99,7(2)	99,5(2)	99,8(3)
O2-Te5-O11	94,8(2)	94,7(1)	94,8(3)	94,8(2)	94,6(2)	94,9(3)
07-Te5-O11	99,4(2)	99,5(1)	99,3(3)	99,3(2)	99,1(2)	99,1(3)
012-1e5-02	75,5(2)	75,4(1)	$\frac{15,2(5)}{08,0(2)}$	75,2(2)	15,2(2)	12,8(3)
012-105-011	97,0(2) 162 7(2)	97,3(1) 162 3(1)	90,0(3) 161 8(3)	90,2(2) 161 6(2)	90,0(2) 161 3(2)	90,2(3) 161 0(3)
014-103-07	104,/[4]	104,0[1]	101,0[5]	101,0[2]	101,0[4]	101,0131

Tab. 4. Motive der gegenseitigen Zuordnung in den Lanthanid(III)-Oxotelluraten(IV) M_2 Te₅O₁₃ (M = Dy - Lu).

	<i>M</i> 1	M2	Te1	Te2	Te3	Te4	Te5	CN
01	1/1	1/1	1/1	0/0	0/0	0/0	0 / 0	3
O2	2/2	0/0	0/0	0 / 0	0/0	0/0	1/1	3
O3	1 / 1	1 / 1	0/0	1 / 1	0 / 0	0/0	0/0	3
O4	1 / 1	1 / 1	1 / 1	0 / 0	0/0	0 / 0	0 / 0	3
O5	1 / 1	0 / 0	0 / 0	0 / 0	1 / 1	0+1 / 0+1	0 / 0	2+1
O6	0 / 0	0 / 0	0 / 0	1 / 1	0/0	1/1	0 / 0	2
07	0 / 0	0/0	1 / 1	0 / 0	0 / 0	0/0	1/1	2
08	0 / 0	1 / 1	0 / 0	0 / 0	1+1 / 1+1	0/0	0 / 0	2+1
09	0 / 0	0 / 0	1 / 1	0 / 0	1 / 1	0/0	0 / 0	2
O10	1 / 1	1/1	0 / 0	1+1 / 1+1	0/0	0/0	0/0	3+1
O11	0 / 0	1 / 1	0 / 0	0+1 / 0+1	0/0	0/0	1/1	2+1
O12	1 / 1	0 / 0	0 / 0	0 / 0	0/0	1/1	0+1 / 0+1	2+1
013	0 / 0	1 / 1	0 / 0	0 / 0	0 / 0	1 / 1	0 / 0	2
CN	8	7	4	3+2	3+1	3+1	3+1	

Abb. 1. Vergleichende Ansicht von gemessenem (*oben*) mit simuliertem (*unten*, als negative Intensitäten) Pulverdiffraktogramm von Lu₂Te₅O₁₃.

menformel entsprechend der Raumgruppe (*P* Ī) die allgemeine zweizählige Atomlage der *Wyckoff*-Notation 2*i*. Das Lanthanid belegt deshalb im Unterschied zu jenem im monoklinen Formeltyp M_2 Te₄O₁₁ [8] zwei kristallographisch unterschiedliche Lagen. Die M^{3+} -Kationen werden im Falle von *M*1 durch acht Sauerstoffatome doppelt-überkappt trigonal-prismatisch und für *M*2 siebenfach in Form einer pentagonalen Bipyramide koordiniert (Abb. 2). Die *M*–O-Abstände variieren von 221–256 pm für Dy₂Te₅O₁₃ bis 216–253 pm für Lu₂Te₅O₁₃ entsprechend der Lanthanidenkontraktion [14]. Nur die jeweils letzten Liganden (O2' als der achte in [(*M*1)O₈]- und O10 als der siebente im [(*M*2)O₇]-Polyeder) entwickeln sich diesem Trend stets gegenläufig (vgl. Tab. 3).

Die Lanthanid-Sauerstoff-Teilstruktur basiert auf einem Doppel aus zwei $[(M1)O_8]$ -Polyedern, die über beide O2–O2'-Kanten kondensiert sind. Über die Polyederkanten O1–O10 und O3–O4 wird dann weiterer Kontakt zu je zwei $[(M2)O_7]$ -Polyedern geknüpft. Es

Abb. 3. Bandartige Lanthanid-Sauerstoff-Teilstruktur ${}_{\infty}^{1}\{[(M1)_{2}(M2)_{2}O_{20}]^{28-}\}$ längs [100].

entstehen dadurch Bänder, die längs [100] verlaufen (Abb. 3) und sich gemäß der *Niggli*-Schreibweise als ${}_{\infty}^{1}\{[(M1)_{2}(M2)_{2}O_{20}]^{28-}\}$ formulieren lassen. Die Gegenüberstellung mit der im Nd₂Te₄O₁₁-Typ [4] vorliegenden Schicht ${}_{\infty}^{2}\{[M_{2}O_{10}]^{14-}\}$ zeigt, dass die Bänder aus diesem Netz als gleichsam über Auftrennung durch die "chemische Schere" TeO₂ hervorgehend konstruiert werden können.

Ein Vergleich der Tellurlagen ergibt, dass Te3, Te4 und Te5 analog zu den Telluratomen im Nd₂Te₄O₁₁-Typ [4] von drei nahen und einem weiter entfernten Sauerstoffatom umgeben werden (Abb. 4). Die Tellurlagen Te1 und Te2 sind hingegen von Sauerstoff vierfach bzw. mit CN = 3+2 koordiniert (Abb. 4). Insbesondere bei der [(Te1)O₄]-Koordination

Abb. 4. Koordinationspolyeder um Te1-Te5.

Abb. 5. Gewellte Oxotellurat(IV)-Schicht parallel zur (101)-Ebene.

 $(d(\text{Te1} - \text{O}) \approx 186 - 213 \text{ pm}; \text{ vgl. Tab. 3})$ kommt die Verwandtschaft zum binären Tellurdioxid (TeO₂) sehr gut zum Ausdruck, denn sowohl die ψ_{eq}^1 -trigonalbipyramidale Koordinationsfigur als auch die Te–O-Abstände ähneln den strukturellen Gegebenheiten im tetragonalen Paratellurit (α -TeO₂: d(Te–O) \approx 190 und 210 pm, je 2×) [12] und im orthorhombischen Tellurit (β -TeO₂: d(Te–O) = 188, 193, 207 und 220 pm) [13] frappierend. Eine Konstruktion von Tellur-Sauerstoff-Ketten als Basiselemente der Tellur-

Abb. 7. Verknüpfung der längs [100] verlaufenden $\frac{1}{2} \{ [(M1)_2(M2)_2O_{20}]^{28-} \}$ -Bänder durch Oxotellurat(IV)-Baugruppen (bzw. über Te3 und Te4).

Sauerstoff-Teilstruktur scheint aufgrund der Vielfalt von Koordinationszahlen und -polyedern allerdings nicht mehr anschaulich möglich. Es ist daher einfacher, von einer parallel (101) verlaufenden gewellten Schicht zu sprechen, die von allen Telluratomen zusammen mit den sie koordinierenden Sauerstoffatomen gebildet wird (Abb. 5). Das nicht-bindende Elektronenpaar (lone pair) der Te⁴⁺-Kationen tritt hingegen genauso wie im Formeltyp M_2 Te₄O₁₁ [8] durch sterische Aktivität in Erscheinung. Dies kann sowohl an den Polyedern sämtlicher Telluratome (Te1-Te5) erkannt werden als auch in der Projektion der Elementarzelle (Abb. 6), die stets große tellurbenachbarte Hohlräume aufweist, in denen sich die stereochemische lone-pair-Aktivität gleichsam zusammenzurotten scheint.

Versucht man abschließend einen Überblick über die Wechselwirkungen zwischen den beiden Teilstruk-

Abb. 8. Komplettes Modell der triklinen M2 Te5O13-Struktur.

Abb. 9. Auftragung der Einkristallgitterkonstanten der triklinen Lanthanid(III)-Oxotellurate(IV) M_2 Te₅O₁₃ (M = Dy – Lu) gegen den M^{3+} -Ionenradius [14] der Lanthanid(III)-Kationen.

turen zu gewinnen, so lohnt es, dies anhand der Strukturveränderung beim Übergang vom Nd₂Te₄O₁₁- zum Ho₂Te₅O₁₃-Typ [2] zu tun. Das Hauptmerkmal dieses Übergangs ist die Auflösung der ${}^{2}_{\infty}{[M_2O_{10}]^{14-}}$ -Schicht zu ${}^{1}_{\infty}{[(M1)_2(M2)_2O_{20}]^{28-}}$ -Bändern. Die Separierung der Bänder untereinander erfolgt in der (101)-Ebene durch zusätzliche Te3-Atome. Weitere Unterschiede bestehen bei der Verknüpfung jener Bänder, die aus unterschiedlichen, jedoch hier aufgetrennten Schichten stammen. Statt wie im Formeltyp M_2 Te₄O₁₁ [4,8] die Schichten über eine (M-O-Te2-O6-Te2-O-M)-Sequenz zu verknüpfen, sind die Bänder im Formeltyp M_2 Te₅O₁₃ nunmehr über (M1-O-Te4-O-M1)-Abfolgen in Richtung [010] miteinander verbunden (Abb. 7 und 8).

Aus den selben Gründen wie für die Vertreter des Formeltyps M_2 Te₄O₁₁ [4–11] geschildert, bewirkt das vom Dysprosium bis zum Lutetium kleiner werdende Lanthanid(III)-Kation auch für die isostrukturelle Reihe M_2 Te₅O₁₃ eine sukzessive Verkleinerung der Elementarzelle im Verlauf der Lanthanidenkontraktion. Die Achslängen der Metrik nehmen hierbei von $a \approx 698$, $b \approx 864$, $c \approx 1059$ pm für Dy₂Te₅O₁₃ bis nach $a \approx 686$, $b \approx 859$, $c \approx 1051$ pm für Lu₂Te₅O₁₃ annähernd linear ab (Abb. 9). Jedoch auch die Winkel der triklinen Metrik verändern sich stetig in geringem Umfang. Ausgehend von Dy₂Te₅O₁₃ mit $\alpha \approx$ 89,1, $\beta \approx 86,8$, $\gamma \approx 75,1^{\circ}$ bis zu Lu₂Te₅O₁₃ mit $\alpha \approx$ 88,7, $\beta \approx 86,7$, $\gamma \approx 74,8^{\circ}$ nehmen alle Winkel stetig etwas ab (vgl. Tab. 1). Eine plausible Erklärung für diesen Umstand kann nicht gegeben werden. Auf der anderen Seite hat dieser Effekt aber auch keine merklichen Auswirkungen auf die Kristallstruktur. Über Lanthanid(III)-Oxotellurate(IV) der Zusammensetzung M₂Te₃O₉ [18] (z. B. monoklines Dy₂Te₃O₉ und triklines Lu₂Te₃O₉) werden wir demnächst berichten [19].

Dank

Wir danken den Herren Dr. Falk Lissner und Dr. Ingo Hartenbach für die Einkristallmessungen, Herrn Dr. Herbert Thurn für die Durchführung der pulverdiffraktometrischen Untersuchungen sowie dem Land Baden-Württemberg für die finanzielle Unterstützung durch Personal- und Sachmittel.

- F. A. Weber, Dissertation, Univ. Stuttgart (1999); F. A. Weber, Th. Schleid, Z. Kristallogr. Suppl. 17, 136 (2000).
- [2] F. A. Weber, S. F. Meier, Th. Schleid, Z. Anorg. Allg. Chem. 627, 2225 (2001).
- [3] S.F. Meier, Staatsexamensarbeit, Univ. Stuttgart (2000); Dissertation, Univ. Stuttgart (2002).
- [4] A. Castro, R. Enjalbert, D. Lloyd, I. Rasines, J. Galy, J. Solid State Chem. 85, 100 (1990).
- [5] M.J. Redman, W.P. Binnie, J.R. Carter, J. Less-Common Met. 16, 407 (1968).
- [6] C. Parada, J. A. Alonso, I. Rasines, Inorg. Chim. Acta 111, 197 (1986).
- [7] I. Ijjaali, Ch. Flaschenriem, J.A. Ibers, J. Alloys Compds. 354, 115 (2003).
- [8] S.F. Meier, Th. Schleid, Z. Naturforsch. **59 b**, 881 (2004).
- [9] Y.-L. Shen, J.-G. Mao, J. Alloys Compds. 385, 86 (2004).
- [10] M. L. Lopez, M. L. Veiga, F. Fernandez, A. Jerez, C. Pico, J. Less-Common Met. **166**, 367 (1990).
- [11] P. Höss, G. Starkulla, Th. Schleid, Acta Crystallogr., in Vorbereitung.

- [12] J. Leciejewicz, Z. Kristallogr. 116, 345 (1961);
 O. Lindqvist, Acta Chem. Scand. 22, 977 (1968);
 T. G. Worlton, R. A. Beyerlein, Phys. Rev. B 12, 1899 (1975);
 I. P. Kondratyuk, L. A. Muradyan, Yu. V. Pisrevskii, V. I. Simonov, Kristallografiya 32, 609 (1987);
 P. A. Thomas, J. Phys. C 21, 4611 (1988).
- T. Ito, H. Sawada, Z. Kristallogr. **102**, 13 (1939);
 H. Beyer, Naturwissenschaften **52**, 155 (1965); H. Beyer, Z. Kristallogr. **124**, 228 (1967).
- [14] R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
- [15] W. Herrendorf, H. Bärnighausen, Programm HABITUS (als STOE-Version X-SHAPE), Giessen, Karlsruhe, Darmstadt 1995.
- [16] G.M. Sheldrick, Programmpaket SHELX-97, Göttingen 1997.
- [17] A. J. C. Wilson (ed.), International Tables for Crystallography, Vol. C, Kluwer Acad. Publ., Dordrecht, Boston, London (1992).
- [18] S. F. Meier, Th. Schleid, Z. Kristallogr. Suppl. 19, 113 (2002).
- [19] S.F. Meier, Th. Schleid, Z. Anorg. Allg. Chem., in Vorbereitung.