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NaNiO2 was prepared through oxidation of a Na2NiO2/
NiO mixture (1:1) in dried oxygen at 500 ◦C. Single crys-
tals have been grown by annealing of NaNiO2 powder at
600 ◦C for 83 d in a flow of dried oxygen. According to
the X-ray analysis of the crystal structure (C2/m, Z =
2, a = 5.3177(2), b = 2.8458(1), c = 5.5819(3) Å,
β = 110.409(2)◦ , R1(all) = 3.4%, 185 independent re-
flections), the Jahn-Teller distorted NiO6 octahedra, shar-
ing edges, build up layers lying parallel to the ab plane. A
phase transition (associated with an energy of 2.9 kJ/mole)
to a high temperature rhombohedral form (R3̄m, Z = 3,
a = 2.958(1), c = 15.748(2) Å, at 300 ◦C) was observed
by Guinier and DSC measurements at 195 ◦C. The magnetic
susceptibility of the monoclinic phase can be described by
the Curie-Weiss law between 100 and 330 K: µ = 2.01µB

(g = 2.32), Θ = 37 K, indicating the dominance of ferromag-
netic interactions of S = 1/2 spins within the NiO2 layers.
Antiferromagnetic interlayer interactions produce an overall
antiferromagnetically ordered structure below 18 K.
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Introduction

Compounds with layered structures are presently at-
tracting high attention. Superconducting cuprates [1],
manganates with colossal magnetoresistance [2] as
well as electrode materials in batteries [3] posses this
structural peculiarity. The most widely applied com-
pounds in the latter materials’ class are lithium and
sodium manganates and cobaltates having the general
formula A1−xMO2 (A = Li, Na, M = Mn, Co). Layers
in these compounds are triangular and built up from
edge-sharing MO6 octahedra. Besides the research ac-
tivities on battery materials (mostly as Li1−xCoO2 [3])
the triangular layered compounds are of particular in-
terest because of magnetic frustration [4], and super-
conductivity phenomena recently found for hydrated
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Na1−xCoO2 [5]. Although A1−xNiO2 niccolates also
have triangular layers, only a few investigations have
been carried out on this family of compounds. For
NaNiO2 even a conventional X-ray single crystal anal-
ysis is still lacking. The structure of NaNiO2 was de-
termined first in 1954 by film methods using a pre-
cession camera [6] and refined later by Rietveld meth-
ods applying X-ray and neutron radiation [7]. A phase
transition to a high temperature rhombohedral form
at about 220 ◦C was established by DTA and Debye-
Scherrer photographs [6]. In a single work on mag-
netism of NaNiO2 [8], it was found that the substance
shows a Curie-Weiss behaviour with µ = 1.74µB and
Θ = 90 K showing the low-spin configuration of Ni+3,
which is retained after the transition into the rhombo-
hedral form. However, the accuracy of the magnetic
parameters obtained is questionable, as was admitted
by the authors. In this work we present a new way
of synthesis and additional investigations on NaNiO2,
which shows interesting physical properties.

Experimental Section

NaNiO2 was synthesised in two steps. First, a mixture
of Na2NiO2 [9] and NiO (in molar ratio 1:1) was prepared
via the azide/nitrate route [10]. Starting materials for the
preparation were nickel(II) oxide (Aldrich, 99.99%), sodium
azide (Sigma-Aldrich, 99.99%) and sodium nitrate (Merck,
99.99%). The precursors (NiO, NaN3 and NaNO3) were
mixed in the ratio required according to eq. (1), milled in
a ball mill, pressed into pellets under 105 N, dried under
vacuum (10−3 mbar) at 150 ◦C for 12 h, and placed un-
der argon in a tightly closed steel container provided with
a silver inlay [11]. In a flow of dry argon the following
temperature profile was applied: 25 → 260 ◦C (100 ◦C/h);
260 → 380 ◦C (5 ◦C/h); 380 → 450 ◦C (10 ◦C/h), and sub-
sequent annealing for 50 h at 450 ◦C. (Caution: if heated too
rapidly, the containers may blow up!) Before the second step,
the obtained powder was homogenized again by grinding in
a glove box and pressed into pellets. The pellets were an-
nealed for 10 h in silver crucibles, in a flow of dried oxygen
(eq. (2)). The as obtained black powder is sensitive to humid
air at storage and should be handled in an inert atmosphere.

5NaN3 + NaNO3 + 6NiO

= 3Na2NiO2 + 3NiO + 8N2

(1)

Na2NiO2 + NiO + 1/2O2 = 2NaNiO2 (2)

Single crystals were grown by annealing of NaNiO2 powder
at 600 ◦C for 83 d in a flow of dried oxygen.
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T [◦C] SG a [Å] b [Å] c [Å] β/γ [◦] V [Å3]
20 C2/m 5.323(1) 2.845(1) 5.584(1) 110.493(3) 79.21(1)

185 C2/m 5.315(1) 2.848(1) 5.588(1) 110.357(6) 83.56(1)
205 R3̄m 2.956(1) = a 15.732(2) 120 119.05(2)
300 R3̄m 2.958(1) = a 15.748(2) 120 119.33(2)

Table 1. Cell parameters and
volume for NaNiO2 depend-
ing on temperature according
to the Guinier measurements.

The X-ray investigation on a powder sample was per-
formed on a STOE Stadi P diffractometer with Cu-Kα1 radi-
ation (λ = 1.54178 Å) at room temperature using a position
sensitive detector and a curved germanium monochromator.
Temperature-dependent X-ray measurements on a powder
sample were performed on a Guinier camera (FR 553, Enraf-
Nonius). The sample was heated from room temperature up
to 300 ◦C with a rate of 15 ◦C/h and afterwards cooled down
to room temperature with the same rate. The single crystal
diffraction data were collected on a three-cycle diffractome-
ter (Bruker AXS), equipped with a SMART-CCD (APEX),
at 293 K.

Magnetic measurements were performed on a SQUID-
Magnetometer (MPMS 5.5, Quantum Design) between 5 and
330 K in magnetic fields up to 5 T. The diamagnetic correc-
tion was applied using tabulated values [12].

Thermal analyses were carried out using a DSC device
(DSC 404, Netzsch) in a Pt crucible covered with a Pt lid.
The sample (m = 80.5 mg) was heated under dry argon up
to 400 ◦C at a rate of 10 K/min and then cooled down with
the same rate. Elementary tin was used as a reference for the
measurement of the heat of transition.

Results and Discussion

NaNiO2 was prepared in two steps as a pure micro-
crystalline powder. The black product is sensitive to moist
air, and must be kept in an inert atmosphere.

The X-ray powder diffraction pattern of the single phase
product could be indexed monoclinicly with lattice con-

Fig. 1. Crystal structure of NaNiO2 (room temperature form),
emphasising the layers of edge sharing NiO6 octahedra and
of intercalated sodium atoms.
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Fig. 2. Temperature-dependent diffraction pattern of NaNiO2

(20 ◦C → 300 ◦C → 20 ◦C, heating/cooling rate: 15 ◦C/h).
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Fig. 3. DSC measurements for NaNiO2 (circles: heating,
squares: cooling).

stants a = 5.3177(2), b = 2.8458(1), c = 5.5819(3) Å,
β = 110.409(2)◦ . The crystal structure of the sodium nic-
colate, which crystallises in the space group C2/m, was de-
termined from a single crystal. The most remarkable struc-
tural feature is NiO2 layers composed of edge-sharing NiO6

octahedra and aligned in the ab plane (Fig. 1). The NiO6

octahedra are elongated due to Jahn-Teller distortion. The
distortion, expected for the low-spin d7 configuration in oc-
tahedral surrounding, is remarkably strong – 13% (apical
Ni-O bond lengths 2.16 Å, basal ones 1.91 Å). Sodium
ions lying between NiO2 slabs are also coordinated octahe-
drally by oxygen atoms, but the distortion is negligible, be-
ing mostly compensated by the mutual shift of the layers. In
general, the structure established in this work [13] is in good
agreement with the result of previous investigations [6, 7],
but the single crystal data presented here are of higher
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Fig. 4. Magnetic susceptibility of NaNiO2 represented as χ
vs. T (squares) and χ−1 vs. T (circles). The full line corre-
sponds to the fit by the Curie-Weiss law. Inset: χT vs. T.

precision by at least one order of magnitude. This room
temperature form of NaNiO2 is isostructural to NaMnO2

[14, 15].
In order to follow the phase transition, a temperature de-

pendent diffraction pattern was recorded (Fig. 2). At about
195 ◦C the symmetry reduction due to the static Jahn-Teller
effect is overcome by thermal motion, and the phase turns
into a rhombohedral form [6] which is isostructural with α-
NaFeO2 [16] or LiNiO2 [6] (rock salt variant). The cell pa-
rameters just before and after the transition, as well as at the
highest temperature measured (300 ◦C), are given in Tab. 1.
The DSC measurements have confirmed (Fig. 3) that this
transition occurs at 195 ◦C, is endothermic on heating with a
latent heat of 2.9 kJ/mole, and shows a hysteresis of 40 ◦C at
the heating/cooling rate of 10 ◦C/min. Our findings are dif-
ferent from the published transition temperature (220 ◦C) [6],
but the maximum on the DSC heating curve corresponds to
this value, what is probably to be explained by a previously
unattended transition hysteresis.

The magnetic susceptibility was measured on a powder
sample in the range 5 – 300 K at magnetic fields from 0.001
to 5 T. The susceptibility data, which are essentially inde-
pendent of the field strength, are shown in Fig. 4 for 0.1 T.
The effective magnetic moment at 300 K (µ = 2.15µB ,
µspin only = 1.73µB) and the growth of χT values with
dropping temperature indicate the low-spin state of the Ni+3

ions (d7) and the dominance of a ferromagnetic spin interac-
tion in the system. The χT curve (inset in Fig. 4) reaches its
maximum at 25 K and than sharply decreases to zero show-
ing that the final ordered state is antiferromagnetic. The Néel
temperature is 18 K (maximum in ∂χ/∂T ). Taking into ac-
count the layered structure of NaNiO2, one can assume that
the dominant ferromagnetic interaction is due to the in-plane
spin exchange, while the three-dimensional, antiferromag-
netically ordered low-temperature state is a consequence of
weaker antiferromagnetic interlayer interactions. In spite of
the complex character of the magnetic interactions, the sus-
ceptibility could be described by the Curie-Weiss law in the
range 100 – 330 K. Below 100 K the χ−1 curve diverges
remarkably from the linear behaviour indicating a presence
of strong antiferromagnetic interlayer interactions. A least-
squares fit of the χ−1 data yields: µ = 2.01µB , Θ = 37 K
and the full lines in Fig. 4. The parameter obtained are in
good agreement with the above qualitative discussion. Com-
pared to the data of a previous investigation (µ = 1.74µB ,
Θ = 90 K) [8], our magnetic moment is essentially higher
and seems to be more plausible, since one normally finds a
larger value (compared to the spin-only one) for a d7 con-
figuration due to the spin-orbit coupling effect. Furthermore,
the too low value of the magnetic moment reported previ-
ously leads to a higher Weiss constant, probably indicating a
fitting inaccuracy caused by the low precision of the Faraday
method used in [8].
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