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The mercury(II) complexes of 2,2′-bipyridine (bpy), [Hg(bpy)(NO2)2], [Hg(bpy)(NO2)
(CH3COO)], and [Hg(bpy)(NO2)(NCS)] have been synthesized and characterized by elemental ana-
lysis, IR, 1H NMR and 13C NMR spectroscopy. The structure of [Hg(bpy)(NO2)2] has been con-
firmed by X-ray crystallography. The complex is a monomer and the Hg atom has an unsymmetrical
six-coordinate geometry, formed by two nitrogen atoms of the bpy ligand and four oxygen atoms
of the two nitrite anions. There is a short intermolecular π-π stacking interaction between parallel
aromatic rings.
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Introduction

In our attempts to synthesize mixed-anion com-
plexes of different metal ions [1 – 4], we have recently
become interested in mercury(II) complexes [5]. In this
paper, we report the synthesis of some mixed-anion
complexes containing nitrite anion, Hg(bpy)(NO 2)X
(X=NO2

−, CH3COO−, and SCN−), differing only in
part of the coordination sphere.

The nitrite ion can coordinate to metal ions in a va-
riety of ways, via both the N and O atoms. In the mon-
odentate coordination this may occur either through
oxygen to give a nitrito complex 1, or through nitro-
gen to give a nitro complex 2. Bidentate coordination is
known to take place either by chelation 3, or by form-
ing a brigde, as in 4 and 5, [6 – 10].

It is well known that the coordination mode of the
nitrite ion is influenced by the steric nature of neigh-
boring ligands and also by the nature of the metal
center [11 – 14]. It is perceptible that there is a gen-
eral trend for the nitrite to coordinate via nitrogen
when little inter-ligand steric crowding is expected,
but via oxygen when the ligands carry bulky sub-
stituents [11 – 15]. On the other hand, despite the well-
established coordination chemistry of the nitrite ligand
with various transition metals [11, 16], the structural
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information available about O-nitrito complexes with
the mercury(II) ion is relatively scarce. Building new
molecular species of the mercury(II) containing the ni-
trite ligand and modifying their architecture in order to
control their physical properties is therefore of interest.

Experimental Section

Physical measurements

IR spectra were recorded as nujol mulls using Perkin-
Elmer 597 and Nicolet 510P spectrophotometers. Microanal-
yses were carried out using a Heraeus CHN-O- Rapid an-
alyzer. Melting points were measured on an Electrothermal
9100 apparatus and are uncorrected.

Preparation of [Hg(bpy)(NO2)2]

The complex was prepared by dissolving mercury(II) ac-
etate (0.318 g, 1 mmol) and sodium nitrite (0.138 g, 2 mmol)
in distilled water and adding an alcoholic solution of 2,2′-
bipyridine (0.312 g, 2 mmol). The resulting solution was
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Table 1. Crystal data and structure refinement for
[Hg(bpy)(NO2)2].

Empirical formula C10H8HgN4O4
Formula weight 488.79
Temperature 120(2) K
Wavelength 0.71073 [Å]
Crystal system monoclinic
Space group C2/c
Unit cell dimensions a = 11.6983(15) Å

b = 14.2382(18) Å
β = 123.895(4)◦
c = 7.7692(9) Å

Volume 1189.5(3) Å3

Z 4
Density (calculated) 2.506 g/cm3

Absorption coefficient 12.956 mm−1

F(000) 832
Crystal size 0.48×0.34×0.22 mm3

θ Range for data collection 2.37 to 28.06◦.
Index ranges −15 ≤ h ≤ 15,

−18 ≤ k ≤ 18,
−7 ≤ l ≤ 10

Reflections collected 3919
Independent reflections 1402 [R(int) = 0.0495]
Completeness to θ = 28.06◦ 96.7%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.7412 and 0.5246
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 1402 / 0 / 87
Goodness-of-fit on F2 1.043
Final R indices

[for 1244 refl. With I > 2σ(I)] R1 = 0.0399, wR2 = 0.0958
R Indices (all data) R1 = 0.0451, wR2 = 0.0984
Largest diff. peak and hole 2.278 and −1.701 e·Å−3

stirred for 3 h at room temperature, and then it was allowed
to stand for 2 – 3 d at ca. 25 ◦C. Colorless crystals of the
product precipitated, which were filtered off, washed with
acetone and ether and dried in air (0.342 g, yield 70%), m.p.
220 ◦C. C10H8HgN4O4: calcd. C 24.55, H 1.63, N 11.45;
found C 24.30, H 1.50, N 11.30.

IR (cm−1) selected bands: υ = 720(s), 1010(s), 1270(vs),
1590(s), 1618(s), 3040(w). 1H NMR (DMSO): δ = 7.80 (t,
2H), 8.30 (q, 2H), 8.72 (d, 2H), and 7.70 (d, 2H). 13C{1H}
NMR (DMSO): δ = 117.50, 124.25, 127.60, 141.65, 149.90,
and 150.60.

Preparation of Hg(bpy)(NO2)X (X = CH3COO− and SCN−)

Complexes Hg(bpy)(NO2)X (X = CH3COO− and SCN−)
were prepared via the method analogous to that used for
[Hg(bpy)(NO2)2].

Hg(bpy)(NO2)(CH3COO): Reactant materials: bpy, mer-
cury(II) acetate, sodium nitrite, (1:1:1); white crystals,
m.p. = 200 ◦C. Yield 60%. C12H11N3O4Hg: calcd.
C 28.80, H 2.19, N 8.37; found C 28.50, H 2.30,
N 8.55.

Table 2. Selected bond lengths /Å and angles /◦ for
[Hg(bpy)(NO2)2].

Hg(1)-N(1) 2.292(5) Hg(1)-N(1)# 2.292(5)
Hg(1)-O(2N)# 2.323(5) Hg(1)-O(2N) 2.323(5)
Hg(1)-O(1N)# 2.523(5) Hg(1)-O(1N) 2.523(5)

N(1)-Hg(1)-N(1)# 72.5(2) N(1)-Hg(1)-O(2N)# 121.83(19)
N(1)#-Hg(1)-O(2N)# 127.03(18) N(1)-Hg(1)-O(2N) 127.03(18)
N(1)#-Hg(1)-O(2N) 121.83(19) N(1)#-Hg(1)-O(2N)# 127.03(18)
O(2N)#-Hg(1)-O(2N) 91.1(3) N(1)-Hg(1)-O(1N)# 144.20(18)
N(1)#-Hg(1)-O(1N)# 86.60(18) O(2N)#-Hg(1)-O(1N)# 51.03(19)
O(2N)-Hg(1)-O(1N)# 88.63(19) N(1)-Hg(1)-O(1N) 86.60(18)
N(1)#-Hg(1)-O(1N) 144.20(18) O(2N)#-Hg(1)-O(1N) 88.63(19)
O(2N)-Hg(1)-O(1N) 51.03(19) O(1N)#-Hg(1)-O(1N) 124.4(3)
Symmetry transformations used to generate equivalent atoms:
# −x+1, y, −z+1/2.

IR (cm−1) selected bands: υ = 725(s), 1014(s), 1265(vs),
1420, 1580, 1601(s), and 3020(w). 1H NMR (DMSO): δ =
1.62 (s, 3H), 7.80 (t, 2H), 8.25 (q, 2H), 8.75 (d, 2H), 7.80
(d, 2H). 13C{1H} NMR (DMSO): δ = 27.30 (CH3), 117.65,
124.30, 127.50, 141.78, 149.90, 150.60 and 178.50 (COO).

Hg(bpy)(SCN)(NO2): Reactant materials: bpy, mer-
cury(II) acetate, sodium nitrite, potassium thiocyanate,
(1:1:2:2), white crystals, (0.310 g, yield 62%), m.p. 186 ◦C.
C11H8N4O2HgS: calcd. C 26.35, H 1.59, N 11.18; found
C 26.20, H 1.80, N 11.80.

IR (cm−1) selected bands: υ = 720(s), 1010(s), 1275(vs),
1591(s), 2075(vs), and 3025(w). 1H NMR (DMSO): δ =
7.80 (t, 2H), 8.25 (q, 2H), 8.80 (d, 2H), and 7.75 (d,
2H). 13C{1H} NMR (DMSO): δ = 117.50, 124.25, 127.60,
141.60, 149.90, and 150.60.

X-ray crystallography

X-ray measurements were made at 120(2) K using a
Siemens R3m/V diffractometer. The intensity data were col-
lected within the range 2.37 ≤ θ ≤ 28.06◦ using graphite-
monochromated Mo-Kα radiation (λ = 0.71073 Å). Accu-
rate unit cell parameters and an orientation matrix for data
collection were obtained from least-squares refinement. In-
tensities of 3919 unique reflections were measured, 1244
of which were unique. The structure was solved by direct
methods and refined by full-matrix least-squares techniques
on F2.

The positions of hydrogen atoms were calculated at ide-
alized geometrical position and included in the structure-
factor calculation as fixed-atom contributions. Corrections
for Lorentz and polarization effects as well as a semi-
empirical absorption correction were applied. All calcula-
tions were carried out with a PDP−11/23+ computer using
the SDP-PLUS program package [17 – 18].

Crystal data and refinement parameters are given in Ta-
ble 1. Selected bond lengths and angles are given in Table 2.
ORTEP diagrams and a perspective view of the packing in
the unit cells are shown in Figures 1 and 2.
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Fig. 1. ORTEP diagram of the [Hg(bpy)(NO2)2] complex.

Fig. 2. π-π Stacking interactions in the unit cell of
[Hg(bpy)(NO2)2].

Discussion

Synthesis

The reactions between 2,2′-bipyridine (bpy) and
mixtures of mercury(II) acetate with sodium nitrite
(1:2), mercury(II) acetate with sodium nitrite (1:1) and
mercury(II) acetate with sodium nitrite and potassium
thiocyanate (1:2:2) provided crystalline materials an-
alyzing as Hg(bpy)(NO2)2, Hg(bpy)(NO2)(CH3COO)
and Hg(bpy)(SCN)(NO2), respectively. The IR spectra
of all three complexes show absorption bands result-
ing from the skeletal vibrations of aromatic rings in
the 1400 – 1600 cm−1 range. The IR spectrum of the
Hg(bpy)(SCN)(NO2) shows ν(SCN) at ca. 2075 cm−1,
and ν(NO2) at ca. 1275 cm−1. Hg(bpy)(NO2)2 ex-

hibits ν(NO2) at ca. 1270 cm−1. The IR spectrum of
the Hg(bpy)(NO2)(CH3COO) shows ν(COO) at ca.
1420 and 1580 cm−1, and ν(NO2) ca. 1265 cm−1.
The characteristic bands of the acetate anion in the
Hg(bpy)(NO2)(CH3COO) complex appear at about
1640 υas(C-O) and 1430 υsym(C-O) cm−1. The ∆ value
(υas-υsym) indicates that the acetate anions coordi-
nate to the MII center in a bridging mode [19 – 21].
The IR spectra of the Hg(bpy)(SCN)(NO2) com-
plex show ν(SCN) at ca. 2080 cm−1, a significant
change relative to data for lead(II) complexes, for
example [Pb(phen)2(NO3)(NCS)] (2020 cm−1) [22],
[Pb(phen)(O2CCH3)(NCS)] (2040 cm−1) [23] and
[Pb(phen)2(O2CCH3)](NCS) (2040 cm−1) [24]. This
suggested that the thiocyanate anion may be coordi-
nated differently in the lead(II) and mercury(II) com-
plexes, and in this complex is coordinated via the sul-
fur atom to the mercury(II) ion. Shifting of both ν as

and νs of the nitrite ligand to lower frequencies com-
pared with the free nitrite ion indicates that this anion
is coordinated as a chelating unit (form 3) [14 – 15].

Crystal structure of [Hg(bpy)(NO2)2]

The ORTEP diagram is shown in Fig. 1 and se-
lected bond lengths and angles are given in Ta-
ble 2. The crystal structure of this compound consists
of monomeric units of [Hg(bpy)(NO2)2. Each mer-
cury atom is chelated by the nitrogen atoms of 2,2 ′-
bipyridine with Hg–N distances of 2.292 Å, and by
the oxygen atoms of the nitrite ligands with Hg(1)-
O(1N) = Hg(1)-O(1N)#1 = 2.523(5) Å and Hg(1)-
O(2N) = Hg(1)-O(2N)#1 = 2.323 Å. It is to be noted
that the two Hg-O distances trans to Hg-N bonds are
appreciably (∼ 0.2 Å) longer than the two Hg-O dis-
tances cis to Hg-N bonds in this complex. The an-
gles N(1)-Hg(1)-O(1N)#1 = 144.20(18) ◦ and N(1)#1-
Hg(1)-O(2N)= 121.83(19)◦ are different. The coordi-
nation number in this complex is six and the geometry
is distorted octahedral.

The structure of this complex is closely re-
lated to that of [Hg(phen)2(SCN)2], (phen = 1,10-
phenanthroline) [25] and [Hg(bpy) 2(SCN)](NO3) [5].
In [Hg(phen)2(SCN)2], the structure contains discrete
molecules, in which mercury is coordinated to four
nitrogen atoms of two 1,10-phenanthroline molecules
and to two sulfur atoms of thiocyanate groups. These
donor atoms define a distorted octahedral geometry
around mercury. The [Hg(bpy) 2(SCN)](NO3) complex
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Fig. 3. Projection of nearest neighbour pairs in the π-π
stacks of heteroaromatic bases in [Hg(bpy)2(SCN)](NO3),
[Hg(phen)2(SCN)2] and [Hg(bpy)(NO2)2] complexes.

is also monomeric and the Hg atom has an unsym-
metrical five-coordinate geometry, with four nitrogen
atoms of two bpy ligands and one sulfur atom of the
thiocyanate ligand as donor atoms.

There are some evident similarities in the three mer-
cury(II) complexes. The compounds are packed in lay-
ers that are held together by normal van der Waals in-
teractions. Within the layers, the packing of the com-
plexes is characterized by π-π stacking interactions
[26 – 27] between “phen” and “bpy” rings of adjacent
chains, as shown in Fig. 3. With the mean molecular
planes close to parallel and separated by a distance of
∼ 3.5 Å, this resembles the planes in graphite. Parallel
arrays of the planes of the aromatic moieties indicate
that these interactions are of the “π-stacking” type,
rather than “edge-to-face” or “vertex-to-face” types
[28 – 30]. Projection of the structure perpendicular to
the ring plane shows the overall form of “slipped”

stacking [28 – 30], which is at least qualitatively un-
derstandable in terms of optimizing approaches be-
tween atoms of opposite charges [31]. Such a parallel-
displaced structure also has a contribution from π-
σ attraction, the more so with increasing offset. In
the crystal reported here, the interplanar distance is
3.43 Å, appreciably shorter than the normal π-π stack-
ing [32 – 33].

It has been shown that electron-poor aromatic
groups interact most strongly with electron-rich aro-
matic groups [34 – 35]. The order of stability in the in-
teraction of two π system is π-deficient-π-deficient>
π–deficient-π-rich> π− rich-π-rich. Hence, it ca. be
expected that within the [Hg(phen)2(SCN)2] complex,
interaction of the electron-poor pyridyl rings with
less electron-poor phenyl groups should be favored.
Since in the molecules of [Hg(bpy)2(SCN)](NO3) and
[Hg(bpy)(NO2)2] both ligands are equal or almost
equal, it ca. be expected that face-to-face π-stacking
interactions should be disfavored due to the dominance
of π-π repulsion.

Complete lists of bond lengths and angles, co-
ordinates and displacement parameters have been de-
posited at Cambridge Crystallography Data Centre.
Supplementary data are available from the CCDC, 12
Union Road, Cambridge CB2 1EZ, UK on request,
quoting the deposition number 242751.
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