Reaktionen vinyloger Hydrazide mit Carbiminium-Verbindungen

Reactions of Vinylogous Hydrazides with Carbiminium Compounds

Hans Möhrle^a, Vlassios Aslanidis^a, Edith Tot^a und Wilfried Peters^b

^a Institut für Pharmazeutische Chemie, Heinrich-Heine-Universität,

Universitätsstr. 1, D-40225 Düsseldorf

^b Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, Universitätsstr. 1, D-40225 Düsseldorf

Sonderdruckanforderungen an Prof. Dr. H. Möhrle. E-mail: h.moehrle@uni-duesseldorf.de

Z. Naturforsch. 60b, 48-62 (2005); eingegangen am 26. Juli 2004

Vinylogous hydrazides of type **1** react with methyleniminium salts only in 2-position to form aminomethylated compounds **2**·HX. The oxidation of **1** with Hg(II)-EDTA results in a twofold dehydrogenation to the lactams **3**, which may be aminomethylated in 2-position. The methylpiperidine derivatives **4** and **5** with Hg(II)-EDTA yield in a monodehydrogenation cyclic iminium compounds. These are isolated as **6** · **CIO**₄ and **7** · **CIO**₄ respectively, and show an enolimine structure, which is not accessible to intramolecular aminoalkylation. With the 2-methylsubstituted enhydrazinones **11** methyleniminium salts cause an attack at 4-position, vinylogous to the carbonyl function, and produce the aminomethylated derivatives **13**. Oxidation of **11** gives rise to the lactams **12**, which are inert to Mannich reagents. The Mannich bases **2** undergo an amine elimination to form the pyrazolinium betaines **15**. The aminomethylated lactams **20** show, in addition to amine eliminations, retro Mannich reactions and from the cleavage products methylenebis(lactam-enhydrazinones) **21** result. Formaldehyde and primary amines generate with **1** and **3** the terahydropyrimidine derivatives **24/25** and **22/23**, respectively. Hexahydroacridinediones **27** are obtained from the reaction of **21** with formaldehyde and acetic acid.

Key words: C-Aminomethylation, Mercury-EDTA Dehydrogenation, Carbinolamine-Iminium Equilibrium

Einleitung

Vinyloge Carbonsäurehydrazide vom Typ **A** (R = H), die aus Dimedon und *N*,*N*-disubstituierten

Schema 1.

Hydrazinen zugänglich sind [1], können grundsätzlich an vier Positionen von Elektrophilen angegriffen werden (Schema 1). Bisher wurde bei der Umsetzung mit Methyleniminiumverbindungen lediglich eine Mannich-Reaktion in 2-Stellung beobachtet [1].

Es erhoben sich deshalb die Fragen: 1) Ist bei einem Edukt mit cyclischem Hydrazinanteil vom Typ **B** eine Oxidation des Heterocyclus zu einer cyclischen Carbiminiumverbindung – analog dieser von tertiären Aminen – möglich und kann damit eine intramolekulare Mannichreaktion in 2-Stellung erfolgen? 2) Verhindert eine Substitution in 2-Position in den Typen **A** und **B** den Angriff einer Iminiumfunktion, oder ändert sich dabei der Reaktionsort?

Ergebnisse und Diskussion

2-Unsubstituierte Dimedonderivate

Als Modellsubstanzen für die Untersuchung dieser Fragestellung wurden aus Dimedon mit 1-Aminoazaheterocyclen verschiedener Ringgröße die Kondensationsprodukte 1a-d dargestellt (Schema 2). Diese

0932-0776 / 05 / 0100-0048 \$ 06.00 © 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

erwiesen sich als *trans-s-trans* [2] fixierte vinyloge Säurehydrazide, wie aus den NMR-Spektren hervorging, die ein Singulett bei $\delta_{\rm H} \sim 5$ ppm für das olefinische Proton und ein weiteres, austauschbares Singulett für das NH-Proton zeigten. Monohydrazonformen konnten – auch im Gleichgewicht – innerhalb der Messgenauigkeit der NMR-Methode ausgeschlossen werden.

Die Reaktion von 1a-d mit *N*-(Chlormethyl)piperidin erfolgte jeweils nur in 2-Stellung und ergab die Hydrochloride der Aminomethylverbindungen 2a-d, aus denen auch die entsprechenden Basen zugänglich waren. Dieser elektrophile Angriff ohne *N*-Substitution zwingt zu dem Schluss, dass zwar in 1a-d formal vinyloge Säurehydrazide vorliegen, es sich aber reaktionsmäßig um Carbonyl-stabilisierte Enhydrazine [3] oder push-pull-Olefine [4] handelt.

Die Oxidation von 1a-c mit Quecksilber(II)ethylendiamintetraacetat [Hg(II)-EDTA] ergab überraschenderweise die Lactame 3a-c, was eine doppelte Dehydrierung erfordert, während beim Morpholinderivat 1d keine Dehydrierung eintrat. Es stellte sich deshalb die Frage nach dem Mechanismus der Lactam-Entstehung. Für die erste Stufe der Dehydrierung ist – analog zu früheren Untersuchungen an cyclischen Aminderivaten [5] – unter Zwei-Elektronenentzug die Bildung einer cyclischen Iminiumfunktion I anzunehmen. Diese kann in zweierlei Weise weiterreagieren:

 α) Bei einer Nachbargruppenbeteiligung erfolgt durch die Cycliminiumfunktion I eine intramolekulare Aminoalkylierung in 2-Stellung unter Bildung eines Tricyclus II, aus dem durch einen weiteren Dehydrierungsschritt eine tricyclische Iminiumverbindung III resultiert, die unter hydrolytischer Ringöffnung über das Carbinolamin IV in das entsprechende Lactam 3 übergeht.

 β) Die Zwischenstufe I reagiert mit keiner Nachbargruppe, vielmehr steht die cyclische Iminiumstruktur in Lösung im Gleichgewicht mit dem entsprechenden Halbaminal V, das weiter zum Iminiumderivat VI dehydriert wird und anschließend durch Protonenabgabe das Lactam 3 ergibt.

Für den β -Weg sprachen die mäßigen Ausbeuten von etwa 35 % Lactam, weil Dehydrierungen über Nachbargruppenbeteiligungen meist rascher und vollständiger ablaufen. In der α -Version sollte bei strenger Gültigkeit des stereoelektronischen Prinzips [6] die Ringgröße des Hydrazinanteils zu einer deutlichen Differenzierung der Produkte führen. Bei dem Pyrrolidinderivat 1a müsste deshalb die Reaktion auf der Stufe II sistieren, da das Azapyrrolizidin nur in der energetisch günstigeren cis-verknüpften Form vorliegen dürfte [7] und deshalb keine Dehydrierung mehr möglich ist, wogegen bei höhergliedrigen Hydrazin-Ringen mit einer trans-Verknüpfung im bicyclischen Zwischenprodukt durch einen weiteren Zwei-Elektronenentzug die Cycliminium-Form III zu erwarten wäre.

Zur Überprüfung dieser Annahmen wurden die methylierten Piperidinderivate **4** und **5** (Schema 3) synthetisiert. Damit war bei der Oxidation durch die größere thermodynamische Stabilität der tertiären Carbenium-Ionen die Dehydrierungsrichtung [8] vor-

gegeben. Gleichzeitig musste bei einer nachfolgenden intramolekularen 2-Substitution ein Tricyclus **VII** mit einem quartären Brückenkohlenstoffatom resultieren, der nicht weiter dehydriert werden konnte und deshalb als Endprodukt zu isolieren sein sollte.

Bei der Oxidation von 4 mit Hg(II)-EDTA wurde nach Extraktion aus ammoniakalischem Milieu mit Methylenchlorid ein Öl erhalten, aus dem in Chloroform mit Perchlorsäure das kristalline Salz des konjugierten Iminium-Ions 6 · ClO₄ entstand, was auf das Dehydrierungsprodukt 6 schließen ließ, das offensichtlich praktisch nur in der tautomeren Enolimin-Form vorlag. Damit ist jedoch elektronisch betrachtet keine Carbonyl-stabilisierte Enaminform mehr und nur noch eine deutlich weniger aktive push-pull-Olefinstruktur vorhanden. Hinzukommt, dass auch aus sterischen Gründen, aufgrund der Konjugation der doppelten trans-s-trans Anordnung, eine intramolekulare Aminoalkylierung ausbleibt. Wurde das Öl in Methanol mit überschüssiger Perchlorsäure in der Wärme behandelt, so resultierte der entsprechende Methylether 8 · ClO₄. Ein Azaindolizidincyclus vom Typ VII war weder nachzuweisen noch zu isolieren. Analog verhielt sich das Dimethylderivat 5 bei der Dehydrierung unter Bildung von 7 mit den Folgeprodukten 7 · ClO₄ und 9 · ClO₄.

Dies bestätigte die Erwartung, dass es bei der Lactambildung von $3\mathbf{a} - \mathbf{c}$ intermediär nicht zu einer Nachbargruppenbeteiligung kommt und lediglich eine Oxidation des Halbaminals der entsprechenden Iminiumverbindung eintritt. Weiterhin musste geschlossen werden, dass in der Cycliminiumverbindung offensichtlich andere Ladungsverteilungen vorliegen, die eine Substitution in 2-Stellung nicht begünstigen.

2-Substituierte Dimedonderivate

Zur weiteren Klärung von Reaktivitätsabhängigkeiten wurde die 2-Stellung durch eine Methylgruppe substituiert (Schema 4). Dazu erfolgte die Umsetzung von 2-Methyldimedon (10) mit asymmetrisch disubstituierten Hydrazinen durch mehrstündiges Erhitzen in Xylol am Wasserabscheider zu 11a-c.

Beim 2-Methyldimedon (10) ist im ¹H NMR eine Lösungsmittelabhängigkeit der Keto-Enol-Formen zu beobachten. Während in Dimethylsulfoxid nur die Enol-Struktur nachgewiesen werden kann, liegt in Deuterochloroform ein Gleichgewicht Enol:Keton = 35:65 vor. Vergleicht man die ¹H NMR-Spektren in Deuterochloroform von 3 mit denen von 11, so ist jeweils nur eine Spezies vorhanden. Die Resonanzlage des Singuletts für die 2-Methylgruppe liegt bei $\delta_{\rm H} \sim 1.6$ und das austauschbare NH im Bereich von $\delta_{\rm H} \sim 5.1 - 5.6$, was die Enhydrazinon-Struktur 11 beweist.

Die Hg(II)-EDTA-Dehydrierung der 2-Methyl-Derivate 11a-c führte in ähnlichen Ausbeuten wie

die von 1 zu den entsprechenden Lactamen 12a-c. Während aber die 2-unsubstituierten Verbindungen 1 mit Methyleniminiumsalz zu 2 reagierten, kam es bei 11 nicht zum Angriff auf die 2-Position, vielmehr musste die Aminomethylierung an einer Methylengruppe eingetreten sein. Die Entscheidung zwischen 4- und 6-Position gelang durch ein 2D-COLOC-NMR-Spektrum, das nachwies, dass es sich um die 4substituierten Aminomethyl-Salze 13 handelt, womit die Umsetzung von vinylogen Ketonstrukturen [9] indiziert wurde. Die Basen konnten in Freiheit gesetzt werden, waren aber nur mäßig stabil und verfärbten sich schon beim Stehen an der Luft. Dementsprechend musste mit einer leicht ablaufenden Retro-Mannich-Reaktion in wässrigem Medium gerechnet werden. In Übereinstimmung damit lieferte die exemplarische Hg(II)-EDTA-Dehydrierung von 13b in der Hauptsache das Lactam 12b und lediglich in Spuren das Formamid 14b. Letzteres dürfte aus der primären Dehydrierung einer Methylamino-Gruppe resultieren, wobei von der Iminium-Struktur das NH unter Bildung eines Tetrahydropyrimidins substituiert wurde. Durch einen weiteren Zwei-Elektronenentzug erfolgte die

Schema 6.

Bildung der Amidiniumverbindung [10], die durch hydrolytische Ringöffnung **14b** ergab. Ob bei der Bildung des Lactams **12b**, die Retro-Mannich-Reaktion vor oder nach der Dehydrierung eintritt, ist nicht sicher zu entscheiden, jedoch konnte **12b** nicht mit *N*,*N*-Dimethylmethyleniminiumchlorid in 4-Stellung aminomethyliert werden.

Bei dem Versuch, im Vergleich zu 11a - c die Mannichbasen 2a - d zu dehydrieren, erwies sich jedoch die Amineliminierung als Hauptreaktion, welche in guter Ausbeute zu den Pyrazoliniumbetainen 15a - dführte (Schema 5). Dehydrierungsprodukte entstanden nur in geringem Maße und in Abhängigkeit vom Aminrest auch unterschiedlich. In allen Fällen waren geringe Mengen der Aldehyde 16a - d nachzuweisen. Aus 2a trat noch zusätzlich das Piperidon 17 auf, was darauf hinweist, dass der Weg über eine Nachbargruppenbeteiligung rascher abläuft, als eine Dehydrierung des Pyrrolidins. Aus **2b** resultierten noch Spuren von Dipiperidon **18**.

Die Lactame 3a-c zeigen in der 2-Stellung immer noch ein nukleophiles Potential und damit die Eigenschaften eines push-pull-Alkens (Schema 6). Dies erwies sich durch die Umsetzung mit Methyleniminiumsalzen. Während die mit N-(Chlormethyl)piperidin entstandenen Salze nach Alkalizusatz die Basen 19b, c lieferten, resultierten aus den Dimethylaminomethyl-Verbindungen 20a-c (·HCl) dabei lediglich die Methylenbis(lactam-enhydrazinone) 21a-c. Offensichtlich läuft hier im basischen Medium eine Amineliminierung und parallel dazu eine Retro-Mannich-Reaktion ab, wobei das regenerierte 3 mit einer Hydroxymethyl- oder einer Methylen-Komponente den Strukturtyp 21 generiert. Dies wurde indirekt bestätigt, durch die Alternativdarstellung aus 3a - c mit Formaldehyd in Gegenwart von Triethylamin.

Schema 7.

Bei der Umsetzung der Lactame 3a-c mit Formaldehyd und primären Aminen wurden neben 21a-czu etwa 10 % die Tetrahydropyrimidine 22a-c und 23a-c erhalten, während aus den Aminen 1a-c unter gleichen Bedingungen in 20–40 % Ausbeute die Tetrahydropyrimidine 24a-c/25a-c und zusätzlich die Methylenbis(enhydrazinone) 26a-c zu gewinnen waren (Schema 7).

Die Lactam-Derivate 21a-c konnten mit Formaldehyd in 80-proz. Essigsäure bei längerem Erhitzen unter Rückfluss in guten Ausbeuten in die Hexahydroacridindione 27a-c überführt werden (Schema 8). Eine entsprechende Reaktion blieb aber bei den Methylenbis(enhydrazinonen) 26a-c aus, was nach den berichteten Ergebnissen an Methylenbis(enaminonen) [11] überraschte.

Zusammenfassend kann festgehalten werden: Verbindungen vom Typ **1** sind zwar formal vinyloge Säurehydrazide, reagieren aber als push-pull-Olefine, wie die ausschließliche Aminomethylierung in 2Position ausweist. Bei der Oxidation von 1 mit Hg(II)-EDTA zeigt die intermediäre Cycliminium-Verbindung jedoch keine Reaktionsbeteiligung der 2-Stellung, sondern eine weitere Dehydrierung des im Gleichgewicht vorhandenen Hydroxyaminals zum Lactam 3, das wiederum 2-aminoalkylierbar ist. Das Ausbleiben einer intramolekularen Mannich-Reaktion ist auf die elektronischen und sterischen Eigenschaften der Enolimin-Partialstruktur der Cycliminiumverbindung wie bei 6 · ClO₄ zurückzuführen. Bei Methylsubstitution der 2-Stellung in 11 erfolgt der Angriff von Methyleniminiumsalzen vinylog zur Carbonylgruppe in 4-Position, während die entsprechenden Lactame 12 inert sind. In 2-Stellung aminomethylierte Enhydrazinone 2 sind als Basen instabil und liefern unter Amineliminierung die Pyrazoliniumbetaine 15. Bei den zugehörigen Lactamen läuft noch parallel dazu eine Retro-Mannich-Reaktion ab, wobei aus den Spaltprodukten die Methylenbis(lactam-enhydrazinone) 21 entstehen. Aus 1 bzw. 3 resultieren mit Formaldehyd und primären Aminen die Tetrahydropyrimidin-Derivate 24/25 bzw. 22/23 neben den Methylenbis(enhydrazinonen) 26 bzw. Methylenbis(lactamenhydrazinonen) 21. Nur von 21 sind mit Formaldehyd und Essigsäure die Hexahydroacridindione 27 zugänglich.

Experimenteller Teil

Schmelzpunkte (unkorr.): Mikroskopheiztisch Reichert Thermovar. – CHN-Analysen: Analysator 2400 Perkin-Elmer. – IR: Perkin-Elmer 177. – MS: Finnigan 3500, Ionisationsenergie 70 eV. – ¹H und ¹³C NMR: Varian FT-80A, Bruker AC 200F und AM 300 (TMS als interner Standard, δ -Skala; *J*-Werte in Hz; APT = Attached Proton Test). – DC: DC-Alufolien Kieselgel 60 F₂₅₄ (Merck 5554); Detektion: a) UV-Löschung bei 254 nm, b) Dragendorff-Reagenz, Nachsprühen mit 10-proz. Schwefelsäure. – SC: "Kieselgel" (Kieselgel 60 Merck, Korngröße 0.04–0.063 mm); "Aluminiumoxid" (Al₂O₃ EGA-Chemie, für die Chromatographie Typ 507C aktiviert, neutral: Korngröße 100–250 mesh). –

Schema 8.

Weitere experimentelle Angaben, insbesondere spektroskopische Daten vgl. Lit. [12].

Aminoalkylierung (Allgemeine Vorschrift 1)

10 mmol *N,N*-Dimethylmethyleniminiumchlorid bzw. *N*-(Chlormethyl)piperidin werden mit 10 mmol Enhydrazinon bzw. Lactam-Enhydrazinon 2 h in wasserfreiem Acetonitril bei 20 °C gerührt. Das Salz der Mannichbase fällt aus, wird abgenutscht, mit Ether gewaschen und umkristallisiert. Die Base wird durch Alkalisieren der wässrigen Lösung mit NaHCO₃ und Extraktion mit Methylenchlorid gewonnen.

Quecksilber(II)-EDTA-Dehydrierung (Allgemeine Vorschrift 2)

Nach Lit. [8], wobei der Filterrückstand anstelle von Aceton mit Ethanol gewaschen wird. *Neutralphase:* Die wässrige Phase wird siebenmal mit 20 ml Methylenchlorid oder/und Petrolether (60 – 80 °C) extrahiert. *Basenphase:* Die wässrige Phase wird nach DC-Kontrolle mit Ammoniak auf pH > 9 gebracht und siebenmal mit 20 ml Methylenchlorid extrahiert. Die jeweils vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und das Lösungsmittel abdestilliert. Gefärbte organische Phasen werden weitgehend eingeengt, über eine Säule (Durchmesser 2 cm, Länge 20 cm) von 6 g neutralem Aluminiumoxid filtriert und mit 200 ml Methylenchlorid eluiert. Die Bestimmung des abgeschiedenen Quecksilbers erfolgt, nach Entfernung der anhaftenden freien ED-TA mit 3 N NaOH, durch rhodanometrische Titration.

Darstellung der Tetrahydropyrimidin-Derivate (Allgemeine Vorschrift 3)

5 mmol Enhydrazinon bzw. Lactam-Enhydrazinon werden mit 5 mmol primärem Amin und 1.62 g 37-proz. Formaldehydlösung (10 mmol) versetzt und 90 min bei 20 °C gerührt. Anschließend wird das Wasser mit Benzol azeotrop am Rotationsverdampfer entfernt, wobei ein Öl zurückbleibt.

A (Enhydrazinone): Das Reaktionsprodukt wird nach Zugabe von 20 ml Aceton auf eine Kieselgelsäule (Durchmesser 3 cm, Länge 50 cm) gegeben. Dabei werden zunächst die Methylenbisverbindung mit Aceton/Petrolether (60-80 °C) (7:3) abgetrennt und anschließend das Tetrahydropyrimidin-Derivat mit Toluol/Ethanol (9:1) eluiert.

B (*Lactam-Enhydrazinone*): Das Öl wird in Chloroform aufgenommen und mit einer 10-proz. weinsauren Lösung ausgeschüttelt. Die Chloroform-Phase enthält die Ausgangs- und Methylenbisverbindung, die mittels Säulenchromatographie an Kieselgel getrennt werden (Säule: Durchmesser 3 cm, Länge 50 cm, Eluens: Aceton/Ether, 8:2). Nach Alkalisieren mit 20-proz. NaOH lässt sich die Tetrahydropyrimidin-Verbindung mit Chloroform extrahieren und kann nach dem Trocknen und Einengen der organischen Phase kristallin erhalten werden.

5,5-Dimethyl-3-(1-pyrrolidinylamino)-2-cyclohexen-1on (1a)

4.31 g (50 mmol) *N*-Aminopyrrolidin und 7.01 g (50 mmol) Dimedon werden in 50 ml Benzol 90 min am Wasserabscheider unter Rückfluss analog [13] erhitzt. Das ausfallende Rohprodukt wird wiederholt aus Ethylacetat um-kristallisiert. Gelbe Kristalle. Ausb. 5.84 g (56 %). Schmp. 134–135 °C. – IR (KBr): v = 3200 (NH), 1580–1540 br (O=C-C=C-NH-) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 6.73$ (s, 1 H, NH), 5.56 (s, 1 H, 2-H), 3.20–2.68 (m, 4 H, 2'/5'-H₂), 2.16 ('s', 4 H, 4-H₂, 6-H₂), 2.03–1.60 (m, 4 H, 3'/4'-H₂), 1.07 (s, 6 H, C(CH₃)₂). – MS (EI, 100 °C): *m/z* (%) = 208 (35; M⁺⁻), 193 (25), 152 (28), 123 (25), 111 (32), 96 (32), 84 (32), 82 (35), 70 (100). – C₁₂H₂₀N₂O (208.3): ber. C 69.19, H 9.67, N 13.44; gef. C 69.36, H 9.66, N 13.13.

5,5-Dimethyl-3-(1-piperidylamino)-2-cyclohexen-1-on (**1b**) und *5,5-Dimethyl-3-(4-morpholinylamino)-2-cyclohexen-1-on* (**1d**): Lit. [1].

3-(1-Azepanylamino)-5,5-dimethyl)-2-cyclohexen-1-on (1c)

Aus 1-Azepanylamin analog **1a**. Gelbe Kristalle. Ausb. 70 %. Schmp. 171 °C (Ethylacetat). – MS (EI, 120 °C): m/z (%) = 236 (53; M^{+·}), 68 (100). – C₁₄H₂₄N₂O (236.4): ber. C 71.14, H 10.23, N 11.85; gef. C 71.16, H 10.22, N 11.58.

5,5-Dimethyl-2-(1-piperidylmethyl)-3-(1-pyrrolidinylamino)-2-cyclohexen-1-on-hydrochlorid (**2a** · HCl)

Nach AV 1: Weiße Kristalle (Ethanol/Ether). Ausb. 40 %. Schmp. 167–169 °C. – IR (KBr): v = 3200 (NH), 2640 br, 2540 br (H⁺N), 1620, 1580–1560 br (O=C-C=C-NH-) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 10.05 - 9.80$ (br, 1 H, H⁺N^{*}), 9.53–9.51 (s br, 1 H, *NH), 3.98/3.90 (d, 2 H, =C-CH₂-N⁺H, nach D₂O-Austausch: s), 3.44–2.76 (m, 8 H, 2/6-H₂ [Pip], 2/5-H₂ [Pyr]), 2.71 (s, 2 H, 4-H₂), 2.22 (s, 2 H, 6-H₂), 2.03–1.76 (m, 10 H, 3-5-H₂ [Pip], 3/4-H₂ [Pyr]), 1.05 (s, 6-H, C(CH₃)₂). – MS (EI, 130 °C): m/z (%) = 221 (7), 208 (16), 151 (11), 84 (22), 70 (100). – C₁₈H₃₁N₃O·HCl·0.6 H₂O (352.7): ber. C 61.29, H 9.49, N 11.91; gef. C 61.16, H 9.61, N 11.90.

5,5-Dimethyl-3-(1-piperidylamino)-2-(1-piperidylmethyl)-2cyclohexen-1-on-hydrochlorid (**2b** · HCl)

Nach AV 1: Weiße Kristalle. Ausb. 47 %. Schmp. 147– 149 °C. – MS (EI, 120 °C): m/z (%) = 319 (2; M^{+·} Base), 84 (100). – C₁₉H₃₃N₃O·HCl (355.9): ber. C 64.22, H 9.57, N 11.83; gef. C 63.98, H 9.42, N 11.52. *Base* (**2b**): Weiße Kristalle (Ether/Petrolether). Ausb. 80 %. Schmp. 92-93 °C (Lit. [1] 91-92 °C).

3-(1-Azepanylamino)-5,5-dimethyl-2-(1-piperidylmethyl)-2cyclohexen-1-on-hydrochlorid (**2c** · HCl)

Nach AV 1: Weiße Kristalle (Ethanol/Ether). Ausb. 38 %. Schmp. 149-151 °C. – $C_{20}H_{35}N_3O$ ·HCl (370.0): ber. C 64.92, H 9.80, N 11.35; gef. C 64.56, H 9.63, N 11.50.

Base (2c): Weiße Kristalle (Ether/Petrolether). Ausb. 77 %. Schmp. 75–76 °C. – IR (KBr): v = 3220 - 3100(NH), 1590–1560 br (O=C-C=C-NH-) cm⁻¹. – ¹H NMR (80 MHz, DMSO-d₆): $\delta = 9.08 - 9.06$ (s, 1 H, NH), 3.19 (s, 2 H, =C-CH₂-N), 3.00–2.75 (m, 4 H, 2/7-H₂ [Aze]), 2.48 (s, 2 H, 4-H₂), 2.34–2.21 (m, 4 H, 2/6-H₂ [Pip]), 2.00 (s, 2 H, 6-H₂), 1.78–1.35 (m, 14 H, 3-5-H₂ [Pip]), 3-6-H₂ [Aze]), 0.97 (s, 6-H, C(CH₃)₂). – MS (EI, 110 °C): m/z (%) = 333 (13; M⁺⁻), 249 (25), 177 (54), 108 (25), 98 (23), 84 (88), 56 (100). – C₂₀H₃₅N₃O (333.5): ber. C 72.02, H 10.57, N 12.60; gef. C 71.78, H 10.37, N 12.42.

5,5-Dimethyl-3-(4-morpholinylamino)-2-(1-piperidylmethyl)-2-cyclohexen-1-on-hydrochlorid (**2d** · HCl)

Nach AV 1: Weiße Kristalle (Ethanol/Ether). Ausb. 42 %. Schmp. 98–99 °C. – MS (EI, 180 °C): m/z (%) = 321 (2; M^{+.} Base), 84 (100). – C₁₈H₃₁N₃O₂·HCl·0.5 H₂O (366.9): ber. C 58.92, H 9.07, N 11.45; gef. C 59.05, H 9.32, N 11.54. *Base* (2d): Weiße Kristalle (Ether/Petrolether). Ausb.

75 %. Schmp. 93–94 °C (Lit. [1] 96 °C).

N-(5,5-Dimethyl-3-oxocyclohex-1-enylamino)-2-pyrrolidinon (**3a**)

Nach AV 2: 1.00 g **1a**, 2.07 g HgO, 3.63 g Na₂EDTA· 2H₂O, 40 ml H₂O. Hg-Abscheidung: 82 % (ber. auf 4 Ox.-Äq.). Aus "Neutralphase" hellorange Kristalle. Ausb. 0.25 g (23 %). Schmp. 172–174 °C (Ethylacetat). – IR (KBr): v = 1690 (N-C=O) m⁻¹. – MS (EI, 160 °C): m/z (%) = 222 (55; M⁺⁻), 207 (100). – C₁₂H₁₈N₂O₂ (222.2): ber. C 64.64, H 8.16, N 12.60; gef. C 64.29, H 8.07, N 12.29.

N-(5,5-Dimethyl-3-oxocyclohex-1-enylamino)-2-piperidon (**3b**)

Nach AV 2: 1.00 g **1b**, 1.95 g HgO, 3.40 g Na₂EDTA-2H₂O, 40 ml H₂O. Hg-Abscheidung: 93 % (ber. auf 4 Ox.-Äq.). Aus "Neutralphase" weiße Nadeln. Ausb. 0.37 g (35 %). Schmp. 175–176 °C (Aceton). – IR (KBr): v = 3225 (NH), 1640 (N-C=O), 1600–1590 br (O=C-C=NH-) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 6.71$ (s, 1 H, NH), 5.17 (s, 1 H, 2'-H), 3.59–3.44 (m, 2 H, 6-H₂), 2.56–2.41 (m, 2 H, 3-H₂), 2.21 ('s', 4 H, 6'-H₂, 4'-H₂), 2.07–1.76 (m, 4 H, 4/5-H₂), 1.08 (s, 6-H, C(CH₃)₂). – ¹³C NMR (20 MHz, CDCl₃): $\delta = 197.89$ (C-3'), 169.48 (C-2), 161.98 (C-1'), 96.72 (C-2'), 50.75 (*C-6), 50.45 (*C-4'), 39.77 (C-6'), 33.06 (C-5'), 32.63 (C-3), 28.27 (C(CH₃)₂), 23.32 (C-5), 20.75 (C-4). – MS (EI, 150 °C): m/z (%) = 236 (32; M⁺⁻), 221 (38), 179 (24), 154 (35), 138 (43), 98 (100), 83 (48), 70 (27), 55 (73). – C₁₃H₂₀N₂O₂ (236.3): ber. C 66.07, H 8.53, N 11.85; gef. C 66.35, H 8.40, N 11.74.

N-(5,5-*Dimethyl-3-oxocyclohex-1-enylamino*)-2-azepanon (**3c**)

Nach AV 2: 1.00 g **1c**, 1.83 g HgO, 3.21 g Na₂EDTA· 2H₂O, 40 ml H₂O. Hg-Abscheidung: 92 % (ber. auf 4 Ox.-Äq.). Aus "Neutralphase" helloranges Pulver. Ausb. 0.30 g (28 %). Schmp. 186–188 °C (Ethylacetat). – IR (KBr): v =1670 (N-C=O) cm⁻¹. – MS (EI, 120 °C): m/z (%) = 250 (12; M⁺⁻), 112 (100). – C₁₄H₂₂N₂O₂ (250.3): ber. C 67.16, H 8.85, N 11.19; gef. C 67.00, H 8.81, N 11.05.

5,5-Dimethyl-3-(2-methyl-1-piperidylamino)-2-cyclohexen-1-on (4)

50 mmol Dimedon werden mit 50 mmol 1-Amino-2methyl-piperidin 16 h in Xylol am Wasserabscheider unter Rückfluss erhitzt. Nach Abkühlen und Einengen verbleibt ein Öl, das aus Ethylacetat kristallisiert. Gelbe Kristalle. Ausb. 6.20 g (53 %). Schmp. 164–166 °C (Ethylacetat). – IR (KBr): v = 3180 (NH), 1590–1500 (O=C-C=C-NH-) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 5.70$ (s, 1 H, 2-H), 5.30–5.10 (s, 1 H, NH), 3.11–2.96 (m, 1 H, 2'-H), 2.39–2.04 (m, 2 H, 6'-H₂), 2.18 (s, 2 H, 4-H₂), 2.10 (s, 2 H, 6-H₂), 1.75–1.16 (m, 6 H, 3'-5'-H₂), 1.06 ((s, 6-H, C(CH₃)₂), überdeckt teilweise 1.02 (d, 3 H, CH₃ [Pip]). – MS (EI, 120 °C): m/z (%) = 236 (25; M⁺⁺), 221 (29), 140 (29), 98 (45), 97 (100), 83 (50), 68 (51). – C₁₄H₂₄N₂O (236.3): ber. C 71.14, H 10.23, N 11.85; gef. C 71.14, H 10.25, N 11.73.

5,5-Dimethyl-3-(2,6-dimethyl-1-piperidylamino)-2-cyclohexen-1-on (5)

Aus 1-Amino-2,6-dimethyl-piperidin analog **4**. Gelbe Kristalle. Ausb. 48 %. Schmp. 196–198 °C (Ethylacetat). – MS (EI, 150 °C): m/z (%) = 250 (19; M^{+·}), 111 (100). – C₁₅H₂₆N₂O (250.4): ber. C 71.95, H 10.46, N 11.19; gef. C 72.05, H 10.62, N 10.95.

N-(3-Hydroxy-5,5-dimethylcyclohex-2-enylidenamino)-3,4, 5,6-tetrahydro-2-methylpyridinium-perchlorat (**6** · **ClO**₄)

Nach AV 2: 1.00 g **4**, 0.91 g HgO, 1.60 g Na₂EDTA-2H₂O, 40 ml H₂O. Hg-Abscheidung: 80 % (ber. auf 2 Ox.-Äq.). Braungefärbter Ansatz, z. T. polymeres Material. Von der "Basenphase" wird das Lösungsmittel am Rotavapor unter schwachem Erwärmen entfernt, der ölige Rückstand

in absol. Chloroform aufgenommen und mit 70-proz. Perchlorsäure versetzt. Aufgrund der guten Löslichkeit des Perchlorats in Chloroform wird die wässrige Phase wiederholt mit Chloroform extrahiert. Nach Vereinigung der Chloroformphasen, Trocknen und Einengen auf 10 ml fällt auf Etherzusatz das Perchlorat bei Kühlung kristallin aus. Weiße Kristalle. Ausb. 0.31 g (22 %). Schmp. 170-172 °C (CHCl₃/Ether). – IR (KBr): v = 3250 (OH), 1660 (C=N⁺), 1605, 1580 (C=C-C=N) cm⁻¹. - ¹H NMR (80 MHz, CDCl₃): $\delta = 8.34 - 8.33$ (s, 1 H, OH), 5.80 (s, 1 H, 2'-H), 3.82-3.70 (m, 2 H, 6-H₂), 3.20-2.95 (m, 2 H, 3-H₂), 2.34 (s, 2 H, *6'-H₂), 2.31 (s, 2 H, *4'-H₂), 2.23 (t, ${}^{5}J = 1.5$, 3 H, =C-CH₃), 2.28-1.95 (m, 4 H, 4/5-H₂), 1.09 (s, 6 H, C(CH₃)₂). – ¹³C NMR (20 MHz, CDCl₃, APT): δ = 178.69 (*C-2), 178.60 (*C-3'), 173.32 (C-1'), 91.42 (C-2'), 53.89 (C-6), 42.93 (C-4'/6'), 32.85 (C-3), 32.42 (C-5'), 27.84 (C-(CH₃)₂), 21.68 (=C-CH₃), 20.93 (C-5), 16.91 (C-4). - MS (EI, 200 °C): m/z (%) = 235 (13; M⁺⁻ Kation), 218 (23), 191 (13), 138 (23), 97 (30), 96 (42), 82 (77), 55 (100). - $C_{14}H_{23}N_2O^+$ ClO_4^- (334.8): ber. C 50.22, H 6.92, N 8.36; gef. C 50.22, H 6.96, N 8.16.

N-(3-Methoxy-5,5-dimethylcyclohex-2-enylidenamino)-3,4, 5,6-tetrahydro-2-methylpyridinium-perchlorat (8 · ClO₄)

Hg(II)-EDTA-Dehydrierung von 4 wie bei $6 \cdot ClO_4$. Der ölige Rückstand der "Basenphase" wird in Methanol aufgenommen, mit 70-proz. HClO₄ bis pH 1 angesäuert und 1 h unter Rückfluss erhitzt. Nach dem Abkühlen wird mit Ether bis zur schwachen Trübung versetzt, wonach das Perchlorat im Kühlschrank kristallin ausfällt. Weiße Kristalle. Ausb. 25 %. Schmp. $146 - 148 \degree C (CH_3OH/Ether) - IR (KBr): v =$ 1660 (C=N⁺), 1600–1590 (C=C-C=N) cm⁻¹. – 1 H NMR (80 MHz, CDCl₃): $\delta = 5.57$ (s, 1 H, 2'-H), 3.98 (s, 3 H, OCH₃), 3.90-3.60 (m, 2 H, 6-H₂), 3.35-3.00 (m, 2 H, 3-H₂), 2.36 (s, 2 H, *6'-H₂), 2.28 ('s', 5 H, *4'-H₂, =C-CH₃), 2.23-1.85 (m, 4 H, 4/5-H₂), 1.07 (s, 6 H, C(CH₃)₂). -¹³C NMR (20 MHz, CDCl₃, APT): $\delta = 178.57$ (*C-2), 178.12 (*C-3'), 173.51 (C-1'), 88.40 (C-2'), 57.47 (OCH₃), 53.60 (C-6), 44.08 (*C-4'), 43.40 (*C-6'), 32.88 (C-3), 32.11 (C-5), 27.69 (C-(CH₃)₂), 21.86 (=C-CH₃), 21.13 (C-5'), 17.15 (C-4). – MS (EI, 220 °C): m/z (%) = 249 (47; M⁺⁻ Kation), 233 (31), 164 (26), 152 (26), 138 (26), 121 (21), 97 (52), 82 (37), 69 (52), 68 (47), 67 (52), 55 (100). - $C_{15}H_{25}N_2O^+$ ClO₄⁻ (348.8): ber. C 51.65, H 7.22, N 8.03; gef. C 51.74, H 7.07, N 8.16.

N-(3-Hydroxy-5,5-dimethylcyclohex-2-enylidenamino)-3,4, 5,6-tetrahydro-2,6-dimethylpyridinium-perchlorat (**7** · ClO₄)

Nach AV 2: 1.00 g 5, 0.86 g HgO, 1.50 g Na₂EDTA· 2H₂O, 40 ml H₂O. Hg-Abscheidung: 80 % (ber. auf 2 Ox.-Äq.). Entsprechend $6 \cdot ClO_4$. Weiße Kristalle. Ausb. 0.34 g (25 %). Schmp. 130–132 °C (CHCl₃/Ether). – MS (EI, 200 °C): m/z (%) = 249 (9; M^{+.} Kation), 83 (100). – C₁₅H₂₅N₂O⁺ ClO₄⁻ (348.8): ber. C 51.65, H 7.22, N 8.03; gef. C 51.89, H 7.15, N 8.05.

N-(3-Methoxy-5,5-dimethylcyclohex-2-enylidenamino)-3,4, 5,6-tetrahydro-2,6-dimethylpyridinium-perchlorat (**9** · ClO₄)

Analog **7** · **ClO**₄. Hellgelbe Kristalle. Ausb. 28 %. Schmp. 155 – 157 °C (CH₃OH/Ether). – MS (EI, 190 °C): m/z (%) = 263 (34; M⁺ Kation), 55 (100). – C₁₆H₂₇N₂O⁺ ClO₄⁻ (362.8): ber. C 52.96, H 7.50, N 7.72; gef. C 52.92, H 7.45, N 7.68.

2,5,5-Trimethyl-3-(1-pyrrolidinylamino)-2-cyclohexen-1-on (11a)

50 mmol 2-Methyldimedon (10) [13] werden mit 50 mmol *N*-Aminopyrrolidin 16 h in Xylol am Wasserabscheider unter Rückfluss erhitzt. Nach Abkühlen und Einengen verbleibt ein Öl, das aus Chloroform/Ether kristallisiert wird. Gelbe Kristalle. Ausb. 4.40 g (40 %). Schmp. 179 – 181 °C (CHCl₃/Ether). – IR (KBr): v = 3240, 3210 (NH), 1595 – 1580, 1570 – 1530 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 5.32 - 5.15$ (s, 1 H, NH), 2.92 – 2.58 (m, 4 H, 2'/5'-H₂), 2.52 (s, 2 H, 4-H₂), 2.16 (s, 2 H, 6-H₂), 2.00 – 1.70 (m, 4 H, 3'/4'-H₂), 1.65 (s, 3 H, =C-CH₃), 1.03 (s, 6 H, C(CH₃)₂). – MS (EI, 160 °C): *m*/*z* (%) = 222 (12; M⁺⁺), 207 (7), 152 (20), 96 (16), 70 (100), 85 (16). – C₁₃H₂₂N₂O (222.3): ber. C 70.23, H 9.97, N 12.60; gef. C 70.10, H 10.01, N 12.47.

2,5,5-Trimethyl-3-(1-piperidylamino)-2-cyclohexen-1-on (11b)

Analog **11a** aus *N*-Aminopiperidin. Gelbe, hygroskopische Kristalle. Ausb. 48 %. Schmp. 182-184 °C (CHCl₃/Ether). – MS (EI, 130 °C): m/z (%) = 236 (23; M^{+·}), 84 (100). – C₁₄H₂₄N₂O·0.2 H₂O (240.0): ber. C 70.08, H 10.25, N 11.67; gef. C 70.06, H 10.15, N 11.50.

3-(1-Azepanylamino)-2,5,5-trimethyl-2-cyclohexen-1-on (11c)

Analog **11a** aus Azepan-1-ylamin. Gelbe hygroskopische Kristalle. Ausb. 55 %. Schmp. $140-142 \,^{\circ}C \,(CHCl_3/Ether). - MS \,(EI, 110 \,^{\circ}C): m/z \,(\%) = 250 \,(35; \,M^+), 98 \,(100). - C_{15}H_{26}N_2O \cdot 0.2 \,H_2O \,(254.0):$ ber. C 70.93, H 10.47, N 11.03; gef. C 71.09, H 10.27, N 10.86.

N-(2,5,5-*Trimethyl-3-oxocyclohex-1-enylamino*)-2-pyrrolidinon (**12a**)

Nach AV 2: 1.00 g **11a**, 1.95 g HgO, 3.40 g Na₂EDTA· 2H₂O, 40 ml 50-proz. Ethanol. Hg-Abscheidung: 59 % (ber. auf 4 Ox.-Äq.). Aus der "Neutralphase" werden hellgelbe, hygroskopische Kristalle aus Chloroform/Ether gewonnen. Ausb. 0.22 g (21 %). Schmp. 196 – 198 °C. – IR (KBr): v = 3230 (NH), 1700 – 1690 (N-C=O), 1630, 1600 – 1590 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 6.09$ (s, 1 H, NH), 3.65 – 3.48 (m, 2 H, 5-H₂), 2.90 – 2.30 (m, 2 H, 3-H₂), 2.22 (s, 2 H, 6'-H₂), 2.18 (s, 2 H, 4'-H₂), 2.15 – 1.82 (m, 2 H, 4-H₂), 1.74 (s, 3 H, =C-CH₃), 1.04 (s, 6 H, C(CH₃)₂). – MS (EI, 200 °C): m/z (%) = 236 (32; M⁺⁺), 221 (35), 208 (35), 152 (35), 137 (45), 108 (32), 96 (38), 84 (31), 70 (100), 56 (51). – C₁₃H₂₀N₂O₂ · 0.1 H₂O (238.2): ber. C 65.56, H 8.58, N 11.85; gef. C 65.55, H 8.54, N 11.76.

N-(2,5,5-*Trimethyl-3-oxocyclohex-1-enylamino*)-2-piperidon (**12b**)

Nach AV 2: 1.00 g **11b**, 1.83 g HgO, 3.21 g Na₂EDTA-2H₂O, 40 ml 50-proz. Ethanol. Hg-Abscheidung: 71 % (ber. auf 4 Ox.-Äq.). Aufarbeitung analog **12a**. Hellgelbe, hygroskopische Kristalle aus Chloroform/Ether. Ausb. 0.30 g (30 %). Schmp. 154–155 °C. – MS (EI, 100 °C): m/z (%) = 250 (35; M⁺⁻), 98 (100). – C₁₄H₂₂N₂O₂ · 0.3 H₂O (255.7): ber. C 65.75, H 8.91, N 10.95; gef. C 65.50, H 8.92, N 10.74.

N-(2,5,5-*Trimethyl-3-oxocyclohex-1-enylamino*)-2-azepanon (**12c**)

Nach AV 2: 1.00 g **11c**, 1.72 g HgO, 3.00 g Na₂EDTA-2H₂O, 40 ml 50-proz. Ethanol. Hg-Abscheidung: 64 % (ber. auf 4 Ox.-Äq.). Aufarbeitung analog **12a**. Hellgelbe Kristalle aus Chloroform/Ether. Ausb. 0.26 g (25 %). Schmp. 173 – 175 °C. – MS (EI, 130 °C: m/z (%) = 264 (47; M⁺⁻), 55 (100). – C₁₅H₂₄N₂O₂ (264.3): ber. C 68.14, H 9.15, N 10.60; gef. C 68.11, H 9.03, N 10.67.

2,5,5-Trimethyl-4-dimethylaminomethyl-3-(1-piperidylamino)-2-cyclohexen-1-on-hydrochlorid (**13b** · HCl)

Nach AV 1: Aus **11b**. Weiße Kristalle aus Ethanol/Ether. Ausb. 52 %. Schmp. 185 – 187 °C. – IR (KBr): v = 3200 - 3190 (NH), 2700 – 2660 (HN⁺), 1600 – 1580 (O=C-C=C-N) cm⁻¹. – ¹H NMR (200 MHz, DMSO-d₆): $\delta = 9.29 - 9.15$ (s br, 1 H, ⁺NH), 7.46 (s, 1 H, NH), 3.71 - 3.52 (m, 1 H, 4-H), 3.51 - 3.27 (m, 1 H, ⁺N-HCH_A überlagert von HOD), 3.26 - 2.60 (m, 11 H, ⁺N-HCH_B, ⁺N(CH₃)₂, 2'/6'-H₂ [Pip]), 2.43 (d, ²J = 17.6, 1 H, 6-H_A), 1.86 (d, ²J = 17.6, 1 H, 6-H_B), 1.78 – 1.25 (m, 8 H, =C-CH₃, 3'/5'-H₂ + 4'-H [Pip]), 1.00/1.17 (2s, 6 H, C(CH₃)₂ überlagert (m, 1 H, 4')-H [Pip]). – C₁₇H₃₁N₃O·HCl (329.9): ber. C 61.89, H 9.77, N 12.73; gef. C 62.15, H 9.67, N 12.82.

2,5,5-Trimethyl-4-dimethylaminomethyl-3-(1-piperidylamino)-2-cyclohexen-1-on (**13b**)

Aus 13b · HCl nach AV 1. Weiße Kristalle aus Ethanol/Ether. Ausb. 73 %. Schmp. $147 - 149 \degree$ C. – IR (KBr): v =

3240, 3200 (NH), 1580, 1545 – 1535 (O=C-C=C-N) cm⁻¹. – ¹H NMR (200 MHz, CDCl₃): $\delta = 6.10 - 5.40$ (s, 1 H, NH), 3.38 - 2.85 (m, 2 H, 2'/6'-H_{eq}), 2.83 - 2.66 (m, 1 H, 4-H, X von ABX), 2.65 - 2.50 (dd, $J_{AX} = .6.5$, $J_{AB} = 12.7$, 1 H, HC-HC H_A -N), 2.41 (d, ²J = 17.3, 1 H, 6-H_A), 2.35 – 2.00 (m, 2 H, 2'/6'-Hax), 2.27 (s, 6 H, N(CH3)2), 2.20-2.10 (dd, $J_{\text{BX}} = 4.7$, 1 H, HC-HC H_{B} -N) teilweise überdeckt von 2.07 (d, ${}^{2}J = 17.3$, 1 H, 6-H_B), 1.85 – 1.50 (m, 5 H, 3'/5'-H₂+4'-H_{eq}), 1.73 (s, 3 H, =C-CH₃), 1.45-0.90 (m, 1 H, 4'- H_{ax}), 1.09/1.03 (2s, 6 H, C(CH₃)₂). – ¹³C NMR (50 MHz, CDCl₃, DEPT): $\delta = 194.16$ (C-1), 163.07 (C-3), 101.53 (C-2), 61.23 (N-CH2-CH), 59.42/57.45 (C-2'/6'), 47.07 (C-6), 45.76 (N(CH₃)₂), 43.38 (C-4), 33.97 (C-5), 29.12/27.04 (C(CH₃)₂), 25.35 (C-3'/5'), 22.98 (C-4'), 7.90 (=C-CH₃); Zuordnungen aufgrund von Korrelationsexperimenten. - MS (EI, 100 °C): m/z (%) = 293 (2; M^{+·}), 209 (2), 193 (2), 166 (2), 97 (3), 84 (6), 83 (4), 71 (4), 58 (100), 55 (8). -C₁₇H₃₁N₃O (293.4): ber. C 69.58, H 10.65, N 14.32; gef. C 69.64, H 10.64, N 14.23.

3-(1-Azepanylamino)-2,5,5-trimethyl-4-dimethylaminomethyl-2-cyclohexen-1-on-hydrochlorid (**13c** · HCl)

Nach AV 1: Aus **11c**. Weiße Kristalle aus Ethanol/Ether. Ausb. 50 %. Schmp. 152 °C. – $C_{18}H_{33}N_3O$ ·HCl (343.9): ber. C 62.86, H 9.96, N 12.22; gef. C 62.87, H 9.92, N 11.95.

3-(1-Azepanylamino)-2,5,5-trimethyl-4-dimethylaminomethyl-2-cyclohexen-1-on (**13c**)

Aus **13c** · HCl nach AV 1. Weiße Kristalle aus Ethanol/Ether. Ausb. 56 %. Schmp. 140 °C. – MS (EI, 120 °C): m/z (%) = 307 (8; M^{+·}), 98 (100). – C₁₈H₃₃N₃O (307.5): ber. C 70.31, H 10.82, N 13.67; gef. C 70.50, H 11.09, N 13.73.

Methyl{[3,6,6-trimethyl-4-oxo-2-(1-piperidylamino)-2-cyclohexen-1-yl]methyl}formamid (14b)

Nach AV 2: 1.00 g **13b**, 1.47 g HgO, 3.57 g Na₂EDTA· 2H₂O, 40 ml H₂O. Hg-Abscheidung: 70 % (ber. auf 4 Ox.-Äq.). Aus der "Neutralphase" erhaltener öliger Rückstand wird säulenchromatographisch an Kieselgel aufgetrennt (Säule: Durchmesser 3 cm, Länge 50 cm, Eluens: CHCl₃/Aceton, 80:20). Aus der ersten Fraktion (R_f = 0.3) wird **12b** und aus einer folgenden **14b** (R_f = 0.2) isoliert. **14b**: Weiße Kristalle aus Ether/Pentan. Ausb. 21 mg (2 %). Schmp. 183–185 °C. – IR (KBr): v = 3250 (NH), 1670–1660 (N-C=O), 1580–1560 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): [Rotamere] $\delta = 8.00/7.87$ (2s, 1 H, N-CHO), 5.18–5.14 (s, 1 H, NH), 3.58–2.00 (m, 12 H, CH-CH₂-N [Hex], 2/6-H₂ [Pip], N-CH₃, 5-H₂ [Hex]), 1.94– 1.36 (m, 9 H, =C-CH₃, 3-5-H₂ [Pip]), 1.13/1.06/1.02 (3 's', 6 H, C(CH₃)₂). – MS (EI, 230 °C): m/z (%) = 307 (6; $\begin{array}{l} M^{+\cdot}),\,235\,\,(5),\,233\,\,(17),\,223\,\,(8),\,208\,\,(4),\,179\,\,(5),\,164\,\,(42),\\ 138\,\,(13),\,\,99\,\,(45),\,98\,\,(62),\,84\,\,(100),\,83\,\,(17),\,71\,\,(46),\,55\,\,(52).\,-C_{17}H_{29}N_3O_2\cdot 0.1\,\,H_2O\,\,(309.2);\,\text{ber. C}\,\,66.03,\,H\,9.52,\\ N\,13.59;\,\text{gef. C}\,\,65.96,\,H\,9.40,\,N\,13.37. \end{array}$

Hg(II)-EDTA-Dehydrierung von 2a

Nach AV 2: 1.00 g **2a**, 1.40 g HgO, 2.45 g Na₂EDTA· 2H₂O, 40 ml H₂O. Hg-Abscheidung: 40 % (ber. auf 4 Ox.-Äq.). Braungefärbter Ansatz, polymere Nebenprodukte.

4,4-Dimethyl-6-oxo-2-(1-pyrrolidinylamino)-1-cyclohexenyl-1-carbaldehyd (16a)

Aus der "Neutralphase" durch Extraktion der Wasserphase mit Petrolether (60/80 °C). Weiße Kristalle aus CHCl₃/Ether. Ausb. 0.10 g (14 %). Schmp. 103–104 °C. – IR (KBr): v = 3200 (NH), 1650 (HN-C=C-CHO) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 12.19$ (s, 1 H, NH), 9.94 (s, 1 H, CHO), 3.00–2.83 (m, 4 H, 2'/5'-H₂), 2.77 (s, 2 H, 3-H₂), 2.25 (s, 2 H, 5-H₂), 1.99–1.82 (m, 4 H, 3'/4'-H₂), 1.08 (s, 6 H, C(CH₃)₂). – MS (EI, 90 °C): m/z (%) = 236 (2; M⁺⁻), 221 (4), 166 (3), 139 (6), 70 (100), 55 (12). – C₁₃H₂₀N₂O₂. 0.1 H₂O (238.1): ber. C 65.57, H 8.55, N 11.76; gef. C 65.69, H 8.50, N 11.72.

N-{*[*4,4-Dimethyl-6-oxo-2-(*1*-pyrrolidinylamino)cylohex-*1*enyl]methyl}-piperidin-2-on (**17**)

Aus der "Neutralphase" durch Extraktion der Wasserphase mit Methylenchlorid. Weiße Kristalle aus Ether/Pentan. Ausb. 20 mg (2 %). Schmp. 81–83 °C. – IR (KBr): v = 3360, 3260 (NH), 1630-1560 (N-C=O, O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 8.92 - 8.90$ (s, 1 H, NH), 4.33 (s, 2 H, =C-CH₂N), 3.38-3.26 (m, 2 H, 6-H₂ [Pip]), 2.92–2.72 (s, 4 H, 2/5-H₂ [Pyr]), 2.58 (s, 2 H, 3-H₂ [Hex]), 1.91-1.71 (m, 8 H, 3/4-H₂ [Pyr], 4/5-H₂ [Pip]), 1.03 (s, 6 H, C(CH₃)₂). – MS (EI, 100 °C): m/z (%) = 319 (5; M⁺⁻), 249 (10), 221 (31), 177 (52), 164 (21), 108 (42), 98 (26), 85 (57), 70 (100), 55 (79). – $C_{18}H_{29}N_{3}O_{2} \cdot 0.4$ H₂O (326.7): ber. C 66.19, H 9.19, N 12.86; gef. C 66.20, H 9.05, N 12.63.

Spiro[6,6-dimethyl-2,3,6,7-tetrahydro-5H-indazol-2,1'pyrrolidinium]-4-olat (**15a**)

Aus der "Basenphase" durch Chloroform-Extraktion. Weiße Kristalle aus Ethylacetat. Ausb. 0.34 g (45 %). Schmp. 141–143 °C. – IR (KBr): v = 1610, 1580–1570 (O=C-C=C-N⁻) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 4.46$ (s, 2 H, 3'-H₂), 3.57–3.39 (m, 4 H, 2/5-H₂), 2.43–2.12 (m, 4 H, 3/4-H₂), 2.33 (s, 2 H, 7'-H₂), 2.30 (s, 2 H, 5'-H₂), 1.06 (s, 6 H, C(CH₃)₂). – MS (EI, 120 °C): m/z (%) = 220 (57; M⁺), 205 (20), 190 (20), 164 (22), 108 (30), 97 (55), 83 (42), 70 (100). – $C_{13}H_{20}N_2O\cdot 1.4~H_2O$ (245.5): ber. C 63.59, H 9.36, N 11.41; gef. C 63.70, H 9.10, N 11.20.

Hg(II)-EDTA-Dehydrierung von 2b

Nach AV 2: 1.00 g **2b**, 1.35 g HgO, 2.35 g Na₂EDTA-2H₂O, 40 ml H₂O. Hg-Abscheidung: 72 % (ber. auf 4 Ox.-Äq.).

4,4-Dimethyl-6-oxo-2-(1-piperidylamino)-1-cyclohexenyl-1carbaldehyd (16b)

Analog **16a**. Weiße Kristalle aus CHCl₃/Ether. Ausb. 0.22 g (28 %). Schmp. 159–161 °C. – IR (KBr): v = 1650 (HN-C=C-CHO) cm⁻¹. – MS (EI, 140 °C): m/z (%) = 250 (19; M^{+·}), 84 (100). – C₁₄H₂₂N₂O₂ (250.3): ber. C 67.18, H 8.85, N 11.19; gef. C 66.95, H 8.70, N 10.90.

N-{[4,4-Dimethyl-6-oxo-2-(2-oxo-1-piperidylamino)cyclohex-1-enyl]methyl}-2-piperidon (**18**)

Analog **17**. Weiße Kristalle aus Ether/Petrolether (60–80 °C). Ausb. 40 mg (4 %). Schmp. 114–116 °C. – IR (KBr): v = 3200 (NH), 1670 (N-C=O), 1605–1600 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 9.73$ (s, 1 H, NH), 4.44–4.33 (m, 2 H, =C-CH₂N), 3.54–3.25 (m, 4 H, 6-H₂ [2·Pip]), 2.53–2.10 (m, 4 H, 3-H₂ [2·Pip]), 2.23 ('s', 4 H, 3-H₂, 5-H₂ [Hex]), 1.98–1.65 (m, 8 H, 4/5-H₂ [2·Pip]), 1.02 (s, 6 H, C(CH₃)₂). – MS (EI, 100 °C): m/z (%) = 347 (10; M⁺⁻), 249 (23), 233 (13), 219 (23), 177 (30), 164 (43), 152 (30), 136 (30), 108 (36), 98 (46), 83 (35), 70 (50), 55 (100). – C₁₉H₂₉N₃O₃ (347.4): ber. C 65.68, H 8.41, N 12.09; gef. C 65.68, H 8.16, N 11.69.

Spiro[6,6-dimethyl-2,3,6,7]-tetrahydro-5H-indazol-2,1'-pi-peridinium]-4-olat (**15b**)

Analog **15a**. Weiße Kristalle aus Ethylacetat. Ausb. 0.29 g (40 %). Schmp. $197 - 199 \degree C$ (Lit. [1] 200 $\degree C$).

Hg(II)-EDTA-Dehydrierung von 2c

Nach AV 2: 1.00 g **2c**, 1.30 g HgO, 2.25 g Na₂EDTA-2H₂O, 40 ml H₂O. Hg-Abscheidung: 70 % (ber. auf 4 Ox.-Äq.).

2-(1-Azepanylamino)-4,4-dimethyl-6-oxo-1-cyclohexenyl-1carbaldehyd (**16c**)

Analog **16b.** Weiße Kristalle aus CHCl₃/Ether. Ausb. 0.28 g (25 %). Schmp. 107–109 °C. – IR (KBr): v = 1690 (HN-C=C-CHO) cm⁻¹. – MS (EI, 130 °C): m/z (%) = 264 (3; M⁺⁻), 98 (100). – C₁₅H₂₄N₂O₂ (264.4): ber. C 68.24, H 9.16, N 10.60; gef. C 68.23, H 9.21, N 10.74.

Spiro[azepan-1,2'-(6',6'-dimethyl-2',3',6',7'-tetrahydro-5'H-indazolium)]-4'-olat (**15c**)

Analog **15a**. Weiße Kristalle aus Ethylacetat. Ausb. 0.34 g (46 %). Schmp. 107 – 109 °C. – MS (EI, 130 °C): m/z (%) = 248 (39; M^{+·}), 41 (100). – C₁₅H₂₄N₂O (248.4): ber. C 72.53, H 9.74, N 11.27; gef. C 72.74, H 9.82, N 11.45.

Hg(II)-EDTA-Dehydrierung von 2d

Nach AV 2: 1.00 g **2d**, 1.35 g HgO, 2.35 g Na₂EDTA-2H₂O, 40 ml H₂O. Hg-Abscheidung: 70 % (ber. auf 4 Ox.-Äq.).

4,4-Dimethyl-2-(4-morpholinylamino)-6-oxo-1-cyclohexenyl-1-carbaldehyd (16d)

Analog **16a**. Weiße Kristalle aus CHCl₃/Ether. Ausb. 0.18 g (23 %). Schmp. 149–151 °C. – IR (KBr): v = 1640 (HN-C=C-CHO) cm⁻¹. – MS (EI, 130 °C): m/z (%) = 252 (8; M⁺⁻), 86 (100), 83 (77). – C₁₃H₂₀N₂O₃ (252.3): ber. C 61.88, H 7.99, N 11.10; gef. C 61.90, H 7.91, N 11.16.

Spiro[6,6-*dimethyl*-2,3,6,7-*tetrahydro*-5*H*-*indazol*-2,4'-*morpholinium*]-4-*olat* (**15d**)

Analog **15a**. Weiße Kristalle aus Ethylacetat. Ausb. 0.30 g (42 %). Schmp. 136 - 138 °C (Lit. [1] 136 °C).

N-[5.5-Dimethyl-2-(1-piperidylmethyl)-3-oxocyclohex-1enylamino]-2-piperidon (**19b** · HCl)

Nach AV 1: Aus **3b**. Weiße Kristalle aus Ethanol/Ether. Ausb. 50 %. Schmp. 172-174 °C. $-C_{19}H_{31}N_3O_2 \cdot$ HCl (369.9): ber. C 61.68, H 8.71, N 11.35; gef. C 61.74, H 8.49, N 11.34.

Base (19b): Weiße Kristalle aus Ether. Ausb. 80 %. Schmp. 248–251 °C. – IR (KBr): v = 3200 (NH), 1665 (N-C=O), 1600–1590 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 5.46$ (s, 1 H, NH), 3.49–3.30 (m, 2 H, 6-H₂ [Lactam]), 3.40 (s, 2 H, =C-CH₂-N), 2.50–2.34 (m, 6 H, 3-H₂ [Lactam], 2/6-H₂ [Pip]), 2.19 (s, 2 H, 4-H₂), 2.13 (s, 2 H, 6-H₂), 1.97–1.87 (m, 4 H, 4/5-H₂ [Lactam]), 1.52–1.46 (m, 6 H, 3-5-H₂ [Pip]), 1.03 (s, 6 H, C(CH₃)₂). – MS (EI, 100 °C): m/z (%) = 249 (37), 219 (20), 177 (18), 164 (27), 108 (26), 98 (72), 84 (100), 83 (18), 70 (31), 55 (68). – C₁₉H₃₁N₃O₂ (333.5): ber. C 68.43, H 9.37, N 12.60; gef. C 68.38, H 9.30, N 12.54.

N-[5,5-Dimethyl-2-(1-piperidylmethyl)-3-oxocyclohex-1enylamino]-2-azepanon (**19c** · HCl)

Nach AV 1: Aus **3c**. Weiße Kristalle aus Ethanol/Ether. Ausb. 45 %. Schmp. 203 - 205 °C (Zers.). – $C_{20}H_{33}N_3O_2$ · HCl (384.9): ber. C 62.56, H 8.92, N 10.94; gef. C 62.69, H 8.74, N 11.01.

Base (19c): Weiße Kristalle aus Ether. Ausb. 75 %. Schmp. 216–218 °C. – IR (KBr): v = 1670 (N-C=O) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 7.78$ (s, 1 H, NH), 3.66–3.59 (m, 2 H, 7-H₂ [Aze]), 3.40 (s, 2 H, =C-CH₂-N), 2.60–2.34 (m, 6 H, 3-H₂ [Aze], 2/6-H₂ [Pip]), 2.19 ('s', 4 H, 4-H₂, 6-H₂), 1.85–1.69 (m, 6 H, 4-6-H₂ [Aze]), 1.58–1.46 (m, 6 H, 3-5-H₂ [Pip]), 1.03 (s, 6 H, C(CH₃)₂). – MS (EI, 150 °C): m/z (%) = 263 (1), 233 (2), 177 (4), 165 (2), 108 (4), 98 (100), 84 (42), 83 (23). – C₂₀H₃₃N₃O₂ (347.5): ber. C 69.13, H 9.57, N 12.09; gef. C 68.74, H 9.14, N 11.58. (Geringe Zers. zu **3c/21c**)

N-(5,5-Dimethyl-2-dimethylaminomethyl-3-oxocyclohex-1-enylamino)-2-pyrrolidinon-hydrochlorid (**20a** · HCl)

Nach AV 1: Aus **3a**. Weiße Kristalle aus Ethanol/Ether. Ausb. 60 %. Schmp. 170–172 °C. – MS (EI, 130 °C): *m/z* (%) = 279 (11; M^{+·} Base), 58 (100). – $C_{15}H_{25}N_3O_2 \cdot HCl \cdot 0.6 H_2O$ (326.7): ber. C 55.16, H 8.39, N 12.86; gef. C 55.00, H 8.21, N 13.15.

N-(5,5-Dimethyl-2-dimethylaminomethyl-3-oxocyclohex-1enylamino)-2-piperidon-hydrochlorid (**20b** · HCl)

Nach AV 1: Aus 3b. Weiße Kristalle aus Ethanol/Ether. Ausb. 73 %. Schmp. 188 - 189 °C. – IR (KBr): v = 1660(N-C=O) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 10.32$ – 9.92 (s, 2 H, NH, +NH), 4.14/4.10 (d, 2 H, =C-CH₂-+NH, n. Austausch: s), 3.98-3.30 (m, 2 H, 6-H₂ [Pip]), 2.82/2.78 (d, 6 H, $^+N(CH_3)_2$, n. Austausch: s), 2.60–2.35 (m, 2 H, 3-H₂ [Pip]), 2.26 ('s', 4 H, 4-H₂, 6-H₂ [Hex]), 2.19-1.86 (m, 4 H, 4/5-H₂ [Pip]), 1.05 (s, 6 H, C(CH₃)₂). – ¹³C NMR (20 MHz, CDCl₃, APT): $\delta = 195.28$ (C-1), 170.35 (C-2'), 166.39 (C-3), 97.00 (C-2), 53.03 (=C-CH₂-N⁺), 49.93 (*C-6'), 49.66 (*C-6), 42.16 (+N(CH₃)₂), 38.13 (C-4), 32.77 (C-3'), 31.62 (C-5), 29.05-27.85 br (C-(CH₃)₂), 23.52 C-5'), 20.83 (C-4'). – MS (EI, 160 °C): m/z (%) = 293 (1; M⁺⁻ Base), 248 (30), 247 (23), 219 (76), 164 (83), 128 (20), 108 (36), 98 (26), 83 (43), 70 (40), 65 (100), 55 (32). -C₁₆H₂₇N₃O₂ · HCl (329.8): ber. C 58.25, H 8.55, N 12.74; gef. C 58.15, H 8.34, N 12.73.

N-(5,5-Dimethyl-2-dimethylaminomethyl-3-oxocyclohex-1enylamino)-2-azepanon-hydrochlorid (**20c** · HCl)

Nach AV 1: Aus **3c**. Weiße Kristalle aus Ethanol/Ether. Ausb. 63 %. Schmp. 172 – 174 °C. – IR (KBr): v = 1645 (N-C=O) cm⁻¹. – MS (EI, 130 °C): m/z (%) = 262 (22), 247 (11), 233 (39), 178 (100), 165 (44), 152 (33), 108 (39), 84 (33), 83 (28). – C₁₇H₂₉N₃O₂ · HCl · 1.5 H₂O (371.6): ber. C 54.94, H 8.95, N 11.30; gef. C 54.94, H 8.71, N 11.31.

1,1'-[2,2'-Methylenbis(5,5-dimethyl-3-oxocylohex-1-enyl-amino)]bis(2-pyrrolidinon) (**21a**)

Aus **20a** · HCl bei Alkalisierung. Weiße Kristalle aus Ether. Ausb. 52 %. Schmp. 99-101 °C (Zers.). – MS (EI,

140 °C): m/z (%) = 456 (24; M⁺⁻), 55 (100). – C₂₅H₃₆N₄O₄ (456.6): ber. C 65.76, H 7.94, N 12.27; gef. C 65.54, H 8.08, N 11.89.

1,1'-[2,2'-Methylenbis(5,5-dimethyl-3-oxocylohex-1-enyl-amino)]bis(2-piperidon) (**21b**)

Aus 20b · HCl bei Alkalisierung. Weiße Kristalle aus Ether. Ausb. 80 %. Schmp. 225 - 227 °C. – IR (KBr): v =3240 (NH), 1660 (N-C=O), 1610, 1580-1500 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 10.33 - 10.32$ (s, 2 H, 2· NH), 3.57 – 3.39 (m, 4 H, 2· 6-H₂), 3.33 (s, 2 H, =C-CH₂-C=), 2.54 (m, 4 H, 2· 3-H₂), 2.19/2.11 (2s, 8 H, 2· 4'/6'-H₂), 2.05 – 1.79 (m, 8 H, 2·4/5-H₂), 1.01 (s, 12 H, 2· C(CH₃)₂). – ¹³C NMR (20 MHz, CDCl₃, APT): δ = 196.57 (C-3'), 169.21 (C-2), 164.44 (C-1'), 106.85 (C-2'), 52.95 (C-6), 49.68 (C-4'), 37.36 (C-6'), 32.78 (C-3), 31.87 (C-5'), 28.96 br/27.71 br (C-(CH₃)₂), 23.60 (C-5), 20.98 - 20.66 (C-4), 16.75 (=C-CH₂-C=). – MS (EI, 200 °C): m/z (%) = 484 $(6; M^{+\cdot}), 368 (13), 272 (60), 237 (9), 202 (11), 164 (13),$ 114 (49), 98 (40), 83 (71), 70 (40), 55 (100). $-C_{27}H_{40}N_4O_4$ (484.6): ber. C 66.91, H 8.32, N 11.56; gef. C 66.62, H 8.26, N 11.62.

1,1'-[2,2'-Methylenbis(5,5-dimethyl-3-oxocylohex-1-enyl-amino)]bis(2-azepanon) (**21c**)

Aus **20c** · HCl bei Alkalisierung. Weiße Kristalle aus Ether. Ausb. 78 %. Schmp. 205 – 209 °C. – MS (EI, 200 °C): m/z (%) = 512 (5; M^{+.}), 55 (100). – C₂₉H₄₄N₄O₄ (512.7): ber. C 67.93, H 8.65, N 10.92; gef. C 68.12, H 8.91, N 10.59.

3,7,7-Trimethyl-1-(2-oxo-1-pyrrolidinyl)-1,2,3,4,5,6,7,8-octahydrochinazolin-5-on (**22a**)

Nach AV 3B aus **3a**, Formaldehyd und Methylamin. Weiße Kristalle aus Ether/Pentan. Ausb. 9 %. Schmp. 162 – 164 °C. – MS (EI, 150 °C): m/z (%) = 277 (23; M^{+·}), 192 (100). – C₁₅H₂₃N₃O₂ (277.4): ber. C 64.94, H 8.39, N 14.95; gef. C 64.61, H 8.20, N 14.84.

3,7,7-*Trimethyl-1-(2-oxo-1-piperidyl)-1,2,3,4,5,6,7,8-octa-hydrochinazolin-5-on* (**22b**)

Nach AV 3B aus **3b** analog **22a**. Weiße Kristalle aus Ether/Pentan. Ausb. 12 %. Schmp. 141–143 °C. – IR (KBr): v = 1670 - 1655 (N-C=O), 1620, 1590-1570 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 4.34$ (d, ²*J* = 10.4, 1 H, 2-H_A), 3.82 (dd, ⁴*J* = 1.1, 1 H, 2-H_B), 3.77 – 3.40 (m, 2 H, 6'-H₂) verdeckt 3.51 (2 H, 4-H₂, AB-System), 2.61–2.39 (m, 2 H, 3'-H₂), 2.49 (s, 3 H, N-CH₃), 2.24–1.72 (m, 8 H, 6/8/4'/5'-H₂), 1.06/1.05 (2s, 6 H, C(CH₃)₂). – ¹³C NMR (20 MHz, CDCl₃, APT): $\delta = 194.67$ (C-5), 169.44 (C-2'), 157.00 (C-8a), 103.85 (C-4a), 69.10 (C-2), 51.20 (C-6'), 49.81 (C-6), 48.62 (C-4), 41.64 (N-CH₃), 37.50 (C-8),

32.79 (C-7), 32.17 (C-3'), 29.63/27.59 (C-(CH₃)₂), 23.59 (C-5'), 20.85 (C-4'). – MS (EI, 140 °C): m/z (%) = 291 (14; M⁺⁻), 248 (25), 233 (18), 193 (67), 192 (100), 177 (47), 164 (45), 135 (22), 122 (23), 108 (25), 98 (20), 83 (27), 70 (20), 55 (38). – C₁₆H₂₅N₃O₂ (291.4): ber. C 65.95, H 8.64, N 14.42; gef. C 65.84, H 8.65, N 14.33.

3,7,7-Trimethyl-1-(2-oxo-1-azepanyl)-1,2,3,4,5,6,7,8-octahydrochinazolin-5-on (**22c**)

Nach AV 3B aus **3c** analog **22a**. Weiße Kristalle aus Ether/Pentan. Ausb. 12 %. Schmp. 129–131 °C. – MS (EI, 120 °C): m/z (%) = 305 (5; M⁺⁻), 192 (100). – C₁₇H₂₇N₃O₂ (305.4): ber. C 66.85, H 8.91, N 13.75; gef. C 66.95, H 9.01, N 13.43.

3-tert-Butyl-7,7-dimethyl-1-(2-oxo-1-pyrrolidinyl)-1,2,3,4, 5,6,7,8-octahydrochinazolin-5-on (**23a**)

Nach AV 3B aus **3a**, Formaldehyd und *tert*-Butylamin. Weiße Kristalle aus Ether/Pentan. Ausb. 7 %. Schmp. 151 – 153 °C. – MS (EI, 130 °C): m/z (%) = 319 (5; M^{+·}), 70 (100). – C₁₈H₂₉N₃O₂ (319.4): ber. C 67.68, H 9.15, N 13.15; gef. C 67.78, H 9.03, N 13.07.

3-tert-Butyl-7,7-dimethyl-1-(2-oxo-1-piperidyl)-1,2,3,4, 5,6,7,8-octahydrochinazolin-5-on (**23b**)

Nach AV 3B aus 3b analog 23a. Weiße Kristalle aus Ether/Pentan. Ausb. 10 %. Schmp. 183-185 °C. -IR (KBr): v = 1660 (N-C=O), 1620, 1590-1560 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): δ = 4.25 (d, ${}^{2}J = 9.8$, 1 H, 2-H_A), 4.04 (dd, ${}^{4}J = 1.9$, 1 H, 2-H_B), 3.76 (dd, ${}^{2}J = 15.0$, ${}^{4}J = 1.9$, 1 H, 4-H_B), 3.33 (d, 1 H, 4-H_A), 3.60-3.25 (m, 2 H, 6'-H₂), 2.58-2.41 (m, 2 H, 3'- $H_2),\ 2.21-2.12\ (m,\ 4\ H,\ 8\text{-}H_2,\ 6\text{-}H_2),\ 2.18-1.67\ (m,\ 4\ H,$ 4'/5'-H2), 1.17 (s, 9 H, C(CH3)3), 1.04 (s, 6 H, C(CH3)2). -¹³C NMR (20 MHz, CDCl₃, APT): $\delta = 194.48$ (C-5), 169.34 (C-2'), 158.00 (C-8a), 107.63 (C-4a), 63.30 (C-2), 54.05 (C(CH₃)₃), 51.41 (C-6'), 49.95 (C-6), 41.57 (C-4), 37.71 (C-8), 32.86 (C-7), 32.04 (C-3'), 29.57/27.88 (C-(CH₃)₂), 26.79 (C(CH₃)₃), 23.64 (C-5'), 20.82 (C-4'). – MS (EI, 180 °C): m/z (%) = 333 (15; M^{+·}), 276 (18), 247 (27), 236 (18), 235 (42), 234 (65), 219 (63), 178 (83), 177 (100), 164 (52), 150 (22), 138 (22), 108 (24), 98 (20), 83 (22), 70 (27). -C₁₉H₃₁N₃O₂ (333.4): ber. C 68.43, H 9.37, N 12.60; gef. C 68.63, H 9.33, N 12.60.

3-tert-Butyl-7.7-dimethyl-1-(2-oxo-1-azepanyl)-1,2,3,4, 5,6,7,8-octahydrochinazolin-5-on (**23c**)

Nach AV 3B aus **3c** analog **23a**. Weiße Kristalle aus Ether/Pentan. Ausb. 9 %. Schmp. $156-158 \,^{\circ}C. - MS$ (EI, 130 $\,^{\circ}C$): $m/z \, (\%) = 262 \, (15), 70 \, (100). - C_{20}H_{33}N_3O_2$

(347.5): ber. C 69.12, H 9.57, N 12.09; gef. C 68.89, H 9.49, N 11.82.

3,7,7-*Trimethyl-1-(1-pyrrolidinyl)-1,2,3,4,5,6,7,8-octahydrochinazolin-5-on* (**24a**)

Nach AV 3A aus **1a**, Formaldehyd und Methylamin. Weiße Kristalle aus Ether/Pentan. Ausb. 40 %. Schmp. 112– 114 °C. – IR (KBr): v = 1620, 1580–1560 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 3.97$ (s, 2 H, 2-H₂), 3.43 (s, 2 H, 4-H₂), 2.93–2.77 (m, 4 H, 2'/5'-H₂), 2.51 (s, 2 H, 8-H₂), 2.40 (s, 3 H, N-CH₃), 2.16 (s, 2 H, 6-H₂), 1.90–1.73 (m, 4 H, 3'/4'-H₂), 1.05 (s, 6 H, C(CH₃)₂). – MS (EI, 90 °C): m/z (%) = 263 (26; M⁺⁻), 220 (70), 219 (100), 177 (94), 164 (47), 108 (53), 84 (50), 83 (70), 70 (50), 55 (61). – C₁₅H₂₅N₃O (263.4): ber. C 68.40, H 9.56, N 15.39; gef. C 68.39, H 9.56, N 15.58.

3,7,7-*Trimethyl-1-(1-piperidyl)-1,2,3,4,5,6,7,8-octahydrochinazolin-5-on* (**24b**): Lit. [1].

1-(1-Azepanyl)-3,7,7-trimethyl-1,2,3,4,5,6,7,8-octahydro-chinazolin-5-on (**24c**)

Nach AV 3A aus **1c** analog **24a**. Weiße Kristalle aus Ether/Petrolether (60–80 °C). Ausb. 43 %. Schmp. 80–82 °C. – MS (EI, 100 °C): m/z (%) = 291 (17; M⁺⁻), 83 (100). – C₁₇H₂₉N₃O (291.4): ber. C 70.06, H 10.03, N 14.41; gef. C 70.00, H 10.00, N 14.17.

3-tert-Butyl-7,7-dimethyl-1-(1-pyrrolidinyl)-1,2,3,4,5,6,7,8octahydrochinazolin-5-on (**25a**)

Nach AV 3A aus **1a**, Formaldehyd und *tert*-Butylamin. Weiße Kristalle aus Ether/Pentan. Ausb. 20 %. Schmp. 92– 94 °C. – IR (KBr): v = 1610, 1580–1560 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 3.97$ (s, 2 H, 2-H₂), 3.46 (s, 2 H, 4-H₂), 3.03–2.70 (m, 4 H, 2'/5'-H₂), 2.48 (s, 2 H, 8-H₂), 2.16 (s, 2 H, 6-H₂), 1.89–1.76 (m, 4 H, 3'/4'-H₂), 1.18 (s, 9 H, C(CH₃)₃), 1.04 (s, 6 H, C(CH₃)₂). – MS (EI, 100 °C): m/z (%) = 305 (47; M⁺⁻), 219 (89), 177 (79), 164 (58), 108 (68), 84 (58), 83 (73), 70 (100), 58 (89), 55 (70). – C₁₈H₃₁N₃O (305.4): ber. C 70.79, H 10.23, N 13.75; gef. C 70.53, H 10.37, N 13.79.

3-tert-Butyl-7,7-dimethyl-1-(1-piperidyl)-1,2,3,4,5,6,7,8-octahydrochinazolin-5-on (**25b**): Lit. [1].

*1-(1-Azepanyl)-3-tert-butyl-7,7-dimethyl-1,2,3,4,5,6,7,8*octahydrochinazolin-5-on (**25c**)

Nach AV 3A analog **25a**. Weiße Kristalle aus Ether/ Pentan. Ausb. 23 %. Schmp. 107–109 °C. – MS (EI, 130 °C): m/z (%) = 333 (12; M^{+·}), 177 (100). – C₂₀H₃₅N₃O (333.5): ber. C 72.02, H 10.57, N 12.59; gef. C 72.12, H 10.61, N 12.32.

2,2'-Methylenbis[5,5-dimethyl-3-(1-pyrrolidinylamino)-2cyclohexen-1-on] (26a)

Nach AV 3A. Weiße Kristalle aus Ether. Ausb. 11 %. Schmp. 150–152 °C. – IR (KBr): v = 3230, 3160– 3100 (NH), 1610, 1570-1530 (O=C-C=C-N) cm⁻¹. – ¹H NMR (80 MHz, CDCl₃): $\delta = 9.66$ (s, 2 H, 2· NH), 3.22 (s, 2 H, =C-CH₂-C=), 2.96–2.72 (m, 8 H, 2· 2'/5'-H₂), 2.62–2.54 (s br, 4 H, 2· 4-H₂), 2.16 (s, 4 H, 2· 6-H₂), 1.91– 1.70 (m, 8 H, 2· 3'/4'-H₂), 1.00 (s, 12 H, 2· C(CH₃)₂). – MS (EI, 170 °C): m/z (%) = 428 (42; M^{+·}), 358 (29), 272 (32), 219 (45), 208 (87), 178 (35), 164 (32), 140 (29), 83 (48), 70 (100), 55 (42). – C₂₅H₄₀N₄O₂ (428.6): ber. C 70.05, H 9.04, N 13.07; gef. C 69.90, H 8.85, N 12.91.

2,2'-Methylenbis[5,5-dimethyl-3-(1-piperidylamino)-2-cyclohexen-1-on] (**26b**): Lit. [1].

2,2'-Methylenbis[3-(1-azepanylamino)-5,5-dimethyl-2cyclohexen-1-on] (26c)

Nach AV 3A. Weiße Kristalle. Ausb. 18 %. Schmp. 128 – 130 °C (Ether). – MS (EI, 170 °C): m/z (%) = 484 (23; M^{+.}), 98 (100). – C₂₉H₄₈N₄O₂ (484.7): ber. C 71.85, H 9.98, N 11.55; gef. C 71.36, H 9.91, N 11.55.

3,3,6,6-Tetramethyl-10-(2-oxo-1-pyrrolidinyl)-3,4,5,6,9,10hexahydroacridin-1,8(2H,7H)-dion (**27a**)

0.91 g (2 mmol) **21a** oder 0.89 g (4 mmol) **3a** werden mit 1.6 g 37-proz. Formaldehyd-Lösung und 5 ml 80-proz. Essigsäure 8 h unter Rückfluss zum Sieden erhitzt. Nach dem Erkalten wird mit Wasser verdünnt, mit Kaliumcarbonat alkalisiert und die rot gefärbte Lösung mit Chloroform erschöpfend extrahiert. Aus den vereinigten Chloroformphasen erhält man nach Trocknen und Einengen durch Ethanol/Ether-Zusatz das kristalline Hexahydroacridindion im Eisfach. Umkristallisation aus Ethanol/Ether: Violette Kristalle. Ausb. 0.40 g (58 %). Schmp. 230–232 °C. – IR (KBr): v = 1725 (N-C=O), 1650–1640, 1600 (O=C-C=C-N) cm⁻¹. – MS (EI, 200 °C): m/z (%) = 356 (29; M⁺⁻), 83 (100). – C₂₁H₂₈N₂O₃·0.6 H₂O (367.3) ber. C 68.68, H 8.01, N 7.63; gef. C 68.63, H 7.77, N 7.82.

3,3,6,6-Tetramethyl-10-(2-oxo-1-piperidyl)-3,4,5,6,9,10hexahydroacridin-1,8(2H,7H)-dion (**27b**)

Aus **21b** bzw. **3b** analog **27a**. Violettfarbene Nadeln aus Ethanol/Ether. Ausb. 75 %. Schmp. $208 - 210 \,^{\circ}\text{C}$. – IR (KBr): $v = 1680 \,(\text{N-C=O}) \,\text{cm}^{-1}$. – ¹H NMR (300 MHz, CDCl₃): $\delta = 3.56 - 3.52 \,(\text{'t}, 2 \text{ H}, 6'\text{-H}_2)$, $3.37 \,(\text{'d}, {}^2J = 19.6, 1 \text{ H}, 9\text{-H}_A)$, 2.83 ('d', 1 H, 9-H_B), 2.64 – 2.60 ('t', 2 H, 3'-H₂), 2.28 (d, ${}^{2}J$ = 16.4, 2 H, 2/7-H_A), 2.22 (d, 2 H, 2/7-H_B), 2.20 (d, ${}^{2}J$ = 16.9, 2 H, 4/5-H_A), 2.05 (d, 2 H, 4/5-H_B), 2.10– 1.91 (m, 4 H, 4'/5'-H₂), 1.08/1.06 (2s, 12 H, 2·C(CH₃)₂). – 13 C NMR (75 MHz, CDCl₃): δ = 195.98 (C-1/8), 169.30 (C-2'), 150.78 (C-4a/10a), 110.85 (C-8a/9a), 53.30 (C-6'), 49.64 (C-2/7), 37.64 (C-4/5), 32.23 (C-3'), 31.79 (C-3/6), 28.76/27.64 (2·C(CH₃)₂), 23.07 (C-5'), 20.38 (C-4'), 18.03 (C-9). – MS (EI, 170 °C): m/z (%) = 370 (10; M⁺⁺), 273 (20), 272 (100), 256 (20), 243 (10), 215 (64), 172 (13), 159 (13), 131 (17), 99 (46), 98 (25), 83 (41), 65 (53), 55 (40). – C₂₂H₃₀N₂O₃ (370.5): ber. C 71.32, H 8.16, N 7.56; gef. C 71.10, H 8.15, N 7.66.

3,3,6,6-Tetramethyl-10-(2-oxo-1-azepanyl)-3,4,5,6,9,10hexahydroacridin-1,8(2H,7H)-dion (**27c**)

Aus **21c** bzw. **3c** analog **27a**. Violettfarbene Kristalle aus Ethanol/Ether. Ausb. 67 %. Schmp. $209 - 210 \,^{\circ}\text{C}$. – IR (KBr): $v = 1690 - 1680 \,(\text{N-C=O}) \,\text{cm}^{-1}$. – MS (EI, 220 $^{\circ}\text{C}$): m/z (%) = 384 (12; M⁺⁺), 55 (100). – C₂₃H₃₂N₂O₃ (384.5): ber. C 71.84, H 8.38, N 7.28; gef. C 71.48, H 8.23, N 7.62.

Dank

Wir danken dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit.

- [1] H. Möhrle, P. Arz, Z. Naturforsch. **42b**, 1035 (1987).
- [2] C. Kashima, M. Yamamoto, N. Sugiyama, J. Chem. Soc. (C) 111 (1970).
- [3] W. Sucrow, E. Wiese, Chem. Ber. 103, 1767 (1970).
- [4] D. Bürgi, A. Sterchi, M. Neuenschwander, Helv. Chim. Acta 60, 2195 (1977).
- [5] H. Möhrle, J. Mehrens, Z. Naturforsch. 53b, 1369 (1998).
- [6] R. B. Turner, R. Anliker, R. Helbling, J. Meier, H. Heusser, Helv. Chim. Acta 38, 411 (1955).
- [7] P. R. Farina, H. Tieckelmann, J. Org. Chem. 38, 4259 (1973).
- [8] H. Möhrle, J. Mehrens, Z. Naturforsch. 53b, 37 (1998).
- [9] M. Tramontini, Synthesis 733 (1973).
- [10] H. Möhrle, Ch. Kamper, Pharmazie 39, 673 (1984).
- [11] J. V. Greenhill, J. Chem. Soc. (C) 2699 (1971).
- [12] V. Aslanidis, Dissertation, Universität Düsseldorf (1988).
- [13] R. D. Desai, J. Chem. Soc. 1079 (1932).