Sultam and Sultim Structures, Part 3 [1]. Strong and Weak Hydrogen Bonds in 3-Oxosultams, 3-Oxosultims and 3-Alkoxysultams

Bärbel Schulze^a, Kathleen Taubert^a, Anja Siegemund^a, Tonia H. E. Freysoldt^a, and Joachim Sieler^b

^a Institut f
ür Organische Chemie, Universit
ät Leipzig, Johannisallee 29, D-04103 Leipzig
 ^b Institut f
ür Anorganische Chemie, Universit
ät Leipzig, Johannisallee 29, D-04103 Leipzig

Reprint requests to Prof. Dr. B. Schulze. E-mail: bschulze@organik.chemie.uni-leipzig.de

Z. Naturforsch. 60b, 41-47 (2005); received August 16, 2004

Dedicated to Professor Dr. Klaus Schulze on the occasion of his 70th birthday

In order to study hydrogen bonding networks in cyclic sulfin- and sulfonamides, X-ray structures were determined for 3-oxosultams **3a**, $\mathbf{c} - \mathbf{e}$, 3-alkoxysultams **5b**, **f** and 3-oxosultim **2f**, all of which show predominantly weak intermolecular hydrogen bonds. The 3-oxosultam **3a** forms tetrameric units by combining two symmetry-independent molecules through weak aromatic C-H···O-S-O hydrogen bonds without participation of the carbonyl groups. The 3-oxosultam **3c**, with two chloro substituents in the N-aryl ring show a polymer arrangement of the molecules through intermolecular association of the SO₂ and CO groups also with the aromatic H-atoms of the aryl rings. Sultam **3d** shows the first polymer chain in the 3-oxosultam series by the strong O-H···O=C hydrogen bonds without participation of the SO₂ group. Two new 'head-to-head' dimers with a 10-membered ring are found for 3-alkoxysultams **5b**, **5f** through weak C-H···O-S-O hydrogen bonds. In the 3-oxosultim **2f** weak intermolecular hydrogen bonds are observed to form a two-dimensional network with the two methylene groups, the carbonyl function and the chloro atom but, surprisingly, without the strong S-oxide acceptor group.

Key words: Sultims, Sultams, Intermolecular Hydrogen Bonds

Introduction

Isothiazol-3(2*H*)-ones and their metal salt complexes are effective industrial microbiocides because of their antibacterial and antifungal activities, particularly the 2-octyl- and mixtures of 2-methylisothiazol-3(2H)-one with 5-chloro analogue [2a]. Furthermore they are reactive intermediates in the synthesis of various organic substances [2b, c], including pharmaceutical chemicals [2d, e].

The 3-oxosultams are prepared by oxidation of isothiazolones with CPBA or by oxidation of 3-un-substituted isothiazoles [3-5]. A series of monocyclic 2-phenyl-isothiazol-3(2H)-one 1,1-dioxides were synthesized by oxidation of isothiazolium perchlorates [6] and the inhibition of the serine proteases cathepsin G, chymotrypsin and human leukocyte elastase (HLE) was verified [7].

We have recently described the X-ray diffraction analysis of 3-hydroxy- and 3-hydroperoxysultims and -sultams, which are precursors of 3-oxosultams 3 [1].

We have found a variety of intermolecular contacts leading to 'head-to-tail' cyclodimers, tetramers, and polymers with strong intermolecular S-O···H-O hydrogen bonds and weak C-H···O=C interactions.

In this paper, we wish to report on the synthesis and X-ray diffraction analysis of compounds **2**, **3** with sulfonyl, sulfoxide and carbonyl group which are efficient hydrogen-bonding acceptors. 3-Alkoxy-sultams **5** were also included in the series. Although described in the literature [8, 9], these compounds have not been thoroughly characterized yet.

We will show here how the three-dimensional structure of highly oxy-functionalized sultim 2 and sultams 3, 5 results from noncovalent interactions between molecules with predominantly weak hydrogen bonds.

Results and Discussion

The 2-aryl-3-oxosultams 3a [6d] and 3c-e are conveniently synthesized by the oxidation of isothi-

0932-0776 / 05 / 0100-0041 \$ 06.00 © 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

	\mathbf{R}^1	\mathbf{R}^2	R ³	
a	Me	Me	2-C1	
b	Me	Me	4-Me	
c	Ph	Me	2,5-Cl ₂	
d	Ph	Me	2-OH	
e	Ph	Me	4-CF ₃	
f	-(CH ₂) ₄ -		4-C1	
1				

Scheme 1.

azolium salts **1** with H_2O_2 in glacial acetic acid (80 °C, 8 h). *S*-oxide **2f** is obtained from the *rac*-*cis*-3-hydroperoxysultim by elimination of water [2c] (Scheme 1).

The oxidation of salts **1** with magnesium monoperoxyphthalate (MMPP·6H₂O) in alcohol (ultrasound, 50 °C) gives the 3-alkoxysultams **5b**, **f** [8,9].

Physical properties and spectroscopic data of the novel 3-oxosultams $3\mathbf{c} - \mathbf{e}$ are described in the experimental part. The solid-state structure of the sulfonamides $3\mathbf{a}, \mathbf{c} - \mathbf{e}$ is revealed with the aid of X-ray crystallography. The crystallographic data are presented in Table 1, selected bond distances and angles in Table 2. We compare the solid-state structure of these compounds with each other and with those of $2\mathbf{f}$ [2c], $5\mathbf{b}$ [8] and $5\mathbf{f}$ [9].

The structure of 3-oxosultam 3a is presented in Fig. 1. The behavior of the two symmetry-independent molecules of 3a towards the hydrogen bonds varies.

Fig. 1. Molecular structure of 3a (top) and 3c (bottom) with labelling and displacement ellipsoids at the 50% probability level.

Fig. 2. Tetrameric arrangement of **3a** with hydrogen bonds C(10)-H(10)···O(1A)-S(1A) and C(10A)-H(10A)···O(1)-S(1), which are generated a centre of symmetry and a weak hydrogen bond C(9)-H(9)···O (1^*) -S (1^*) ; (Symmetry code A: -x, -y, -z).

	3a	3c	3d	3e	Table 1. Crystal data
Empirical formula	C11H10CINO3S	C ₁₆ H ₁₁ Cl ₂ NO ₃ S	C ₁₆ H ₁₃ NO ₄ S	C17H12F3NO3S	and structure refin-
Formula weight	271.71	368.22	315.33	367.34	ment for 3-oxosul-
Temperature [K]	218(2)	213(2)	243(2)	223(2)	tams 3a, c – e .
Crystal system	monoclinic	monoclinic	orthorhombic	monoclinic	
Space group	$P2_1/c$	$P2_1/c$	Pna2(1)	$P2_1/n$	
a [Å]	11.6206(4)	8.075(3)	7.3309(13)	5.2956(4)	
<i>b</i> [Å]	25.6859(10)	10.161(4)	15.803(3)	13.719(1)	
c [Å]	8.0354(3)	19.715(7)	12.135(2)	22.104(2)	
α [°]	90	90	90	90	
β [°]	93.963(1)	98.314(6)	90.0	93.460(2)	
γ[°]	90	90	90	90	
Volume [Å ³]	2392.72(15)	1600.6(10)	1405.8(4)	1602.9(2)	
Ζ	8	4	4	4	
Density [Mg/m ³]	1.509	1.528	1.490	1.522	
Absorption coeff. [mm ⁻¹]	0.488	0.549	0.249	0.251	
Crystal size [mm]	0.25 imes 0.25 imes 0.20	0.30 imes 0.20 imes 0.20	0.30 imes 0.20 imes 0.20	$0.80 \times 0.20 \times 0.10$	
θ Range for data collect. [°]	1.59 - 28.74	2.09 - 27.00	2.12 - 25.98	1.75 - 28.27	
Index ranges	$-15 \le h \le 15$,	$-10 \le h \le 9$,	$-9 \le h \le 6$,	$-6 \le h \le 6$,	
-	$-34 \le k \le 34$,	$-11 \le k \le 12$,	$-19 \le k \le 18$,	$-18 \le k \le 17$,	
	-7 < l < 10	-25 < l < 24	-14 < l < 14	-29 < l < 15	
Reflections collected	14839	9229	7437	10182	
Independent reflections	5697	3489	2652	3864	
-	$[R_{\rm int} = 0.0178]$	$[R_{int} = 0.0143]$	$[R_{int} = 0.0301]$	$[R_{int} = 0.0214]$	
Absorption correction	SADABS	SADABS	SADABS	SADABS	
Max./min. transmission	0.9087/0.8877	0.8982/0.8527	0.9520/0.9292	0.9753/0.8243	
Data/parameters	5697/388	3489/252	2652/252	3864/274	
Goodness-of-Fit on F^2	0.916	1.048	1.139	1.084	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0368$	$R_1 = 0.0307$	$R_1 = 0.0385$	$R_1 = 0.0497$	
- ()-	$wR_2 = 0.0988$	$wR_2 = 0.0823$	$wR_2 = 0.0768$	$wR_2 = 0.1166$	
R Indices (all data)	$R_1 = 0.0521$	$R_1 = 0.0379$	$R_1 = 0.0486$	$R_1 = 0.0696$	
· · · ·	$wR_2 = 0.1082$	$wR_2 = 0.0865$	$wR_2 = 0.0804$	$wR_2 = 0.1244$	
Lgst diff peak/hole [$e Å^{-3}$]	0.324/-0.330	0.302/-0.256	0.235/-0.270	0.380/-0.278	

One of the independent molecules forms a dimer with centrosymmetrically related molecule through intermolecular hydrogen bonds C(10)-H(10)···O(1A)-S(1A) and C(10A)-H(10A)···O(1)-S(1) (Fig. 2). The other molecule is connected to this dimeric unit by the hydrogen bond C(9)-H(9)···O (1^*) -S (1^*) and these completes a tetrameric unit. The strong hydrogen bond acceptor of the C=O functional group is not involved. The interplanar angle between the N-aryl substituent and the isothiazole ring is 68.2° in **3a** and 65.7° in **3a***.

The 3-oxosultam 3c, with two chloro substituents at the N-aryl ring, is arranged as a polymer and indicates the intermolecular association between the O-atom of the SO₂ and CO groups and the H-atoms of the aryl rings (Fig. 3). The *o*-chloro substituted N-aryl (79.5°) and also the 4-aryl ring (99.6°) are almost perpendicular to the isothiazole plane. Compound **3c** builds up a complex three-dimensional network structure with weak hydrogen bonds. Each molecule contributes three hydrogen bonds (Fig. 3, molecule with atom S(1B)). The hydrogen bonds over the C(15)-H(15)...O(3B) form a helix along the monoclinic *b*-axis, caused by the

Fig. 3. Polymer arrangement of the molecules 3c by hydrogen bonds C(15)-H(15)...O(3B) and C(3B)-H(3B)...O(2D)-S(1D).

Table 2. Selected bond lengths [Å] and angles [°] for 3a, c-e with estimated standard deviations in parentheses.

	Bond lengths [Å]		Angles[°]		
3a	S(1)-O(1)	1.4287(16)	O(1)-S(1)-O(2)	117.41(10)	
	S(1)-O(2)	1.4268(15)	O(1)-S(1)-N(1)	110.50(9)	
	S(1)-N(1)	1.6697(16)	O(2)-S(1)-N(1)	109.59(9)	
	S(1)-C(3)	1.7552(19)	O(1)-S(1)-C(3)	110.33(10)	
	O(3)-C(1)	1.204(2)	O(2)-S(1)-C(3)	113.24(9)	
	N(1)-C(1)	1.388(2)	O(3)-C(1)-N(1)	124.26(17)	
	N(1)-C(6)	1.428(2)	O(3)-C(1)-C(2)	126.18(17)	
	C(1)-C(2)	1.495(2)	N(1)-S(1)-C(3)	93.12(8)	
	C(2)-C(3)	1.337(3)	C(1)-N(1)-S(1)	113.41(12)	
	C(2)-C(4)	1.485(3)	C(1)-C(2)-C(3)	113.18(17)	
3c	S(1)-O(1)	1.4298(14)	O(1)-S(1)-O(2)	117.04(8)	
	S(1)-O(2)	1.4257(13)	O(1)-S(1)-N(1)	110.08(8)	
	S(1)-N(1)	1.6658(15)	O(2)-S(1)-N(1)	110.13(8)	
	S(1)-C(8)	1.7595(17)	O(1)-S(1)-C(8)	110.47(8)	
	O(3)-C(10)	1.2044(19)	O(2)-S(1)-C(8)	113.24(8)	
	N(1)-C(10)	1.396(2)	O(3)-C(10)-N(1)	123.21(15)	
	N(1)-C(11)	1.429(2)	O(3)-C(10)-C(7)	127.47(15)	
	C(7)-C(10)	1.502(2)	N(1)-S(1)-C(8)	93.36(7)	
	C(7)-C(8)	1.339(2)	C(10)-N(1)-S(1)	113.42(11)	
	C(8)-C(9)	1.495(2)	C(10)-C(7)-C(8)	113.21(14)	
3d	S(1)-O(1)	1.425(2)	O(1)-S(1)-O(2)	118.34(12)	
	S(1)-O(2)	1.422(2)	O(1)-S(1)-N(1)	109.62(13)	
	S(1)-N(1)	1.684(2)	O(2)-S(1)-N(1)	109.38(12)	
	S(1)-C(1)	1.769(3)	O(1)-S(1)-C(1)	112.51(13)	
	O(3)-C(3)	1.215(3)	O(2)-S(1)-C(1)	110.97(14)	
	N(1)-C(3)	1.374(3)	O(3)-C(3)-N(1)	123.3(3)	
	N(1)-C(10)	1.434(3)	O(3)-C(3)-C(2)	125.9(2)	
	C(2)-C(3)	1.499(4)	N(1)-S(1)-C(1)	93.07(13)	
	C(1)-C(2)	1.341(4)	C(3)-N(1)-S(1)	112.51(18)	
	C(1)-C(16)	1.481(4)	C(1)-C(2)-C(3)	112.7(2)	
3e	S(1)-O(1)	1.4207(16)	O(1)-S(1)-O(2)	117.95(9)	
	S(1)-O(2)	1.4270(15)	O(1)-S(1)-N(1)	110.28(9)	
	S(1)-N(1)	1.6684(17)	O(2)-S(1)-N(1)	109.59(10)	
	S(1)-C(8)	1.7615(19)	O(1)-S(1)-C(8)	111.94(9)	
	O(3)-C(10)	1.204(2)	O(2)-S(1)-C(8)	111.19(9)	
	N(1)-C(10)	1.390(2)	O(3)-C(10)-N(1)	123.14(18)	
	N(1)-C(11)	1.439(3)	O(3)-C(10)-C(7)	127.21(18)	
	C(7)-C(10)	1.502(3)	N(1)-S(1)-C(8)	93.09(9)	
	C(7)-C(8)	1.337(3)	C(10)-N(1)-S(1)	113.50(13)	
	C(8)-C(9)	1.487(3)	C(8)-C(7)-C(10)	112.88(17)	

Fig. 4. Molecular structure of **3d** with labelling and displacement ellipsoids at the 50% probability level.

Table 3. Geometric data ^a for the hydrogen bonds, in the
solid-state of 3-oxo-sultim $2f$, 3-oxo-sultams $3a, c-e$ and 3-
alkoxy-sultams 5b and 5f .

		~			
	$D-H\cdots A^b$	D-H	H···A	D···A	D-H···A
		[Å]	[Å]	[Å]	[°]
2f	$C(4E)-H(4E)\cdots Cl(1B)$	1.08	2.77	3.848	175.5
	$C(7F)-H(7F)\cdots O(1E)$	0.99	2.43	3.140	128.2
3a	$C(9)-H(9)\cdots O(1^*)$	0.99	2.42	3.233	139.0
	C(10)-H(10)····O(1A)	0.98	2.55	3.476	157.0
3c	$C(3B)-H(3B)\cdots O(2D)$	0.89	2.49	3.279	147.3
	C(15)-H(15)····O(3B)	0.91	2.59	3.466	161.5
3d	$O(4)-H(4)\cdots O(3)$	1.15	1.80	2.829	145.5
3e	C(1)- $H(1)$ ···· $O(3)$	0.93	2.56	3.001	109.8
	$C(13)-H(13)\cdots F(2)$	0.89	2.44	2.746	100.3
5b	C(1)- $H(1)$ ···· $O(2)$	1.01	2.51	3.400	147.1
5f	C(1)- $H(1)$ ···· $O(2)$	0.96	2.52	3.248	132.2
	C(7)- $H(7B)$ ···· $O(3)$	0.95	2.60	3.472	153.5

^a Data calculated by using the program SHELXL [10]; ^b D: donor atom; A: acceptor atom.

Fig. 5. Polymer structure of **3d** with strong O-H···O=C bonds. The chains are formed by a glide plane in the space group $P2_1/c$.

21-screw axis. The symmetry connections between the atoms S(1B) and S(1), respectively S(1C) and S(1B) are -x, 0.5 + y, 0.5 - z. The S(1C)-atom and the S(1)-atom are transferred into each other by the translation x, 1 + y, z. The third hydrogen bond is built up between the atoms C(3B)-H(3B) \cdots O(2D)-S(1D). These hydrogen bonds are formed by the *c*-glide plane. The symmetry relation among S(1B) and S(1D) is x, 0.5 - y, 0.5 + z. By combination of the screw axis and the glide plane, the molecules with the atoms S(1) and S(1A) are situated centrosymmetrically to each other.

Interestingly, the 3-oxosultam **3d** (Fig. 4 and 5), with a 2-hydroxy substituent in the N-aryl ring, forms polymer chains through strong intermolecular C= $0 \cdots H$ -O bridges (2.829 Å) in which the 2-OH sub-

Fig. 6. Molecular structure of **3e** with labelling and displacement ellipsoids at the 50% probability level.

stituted N-aryl ring (96.1°) is perpendicular to the sultam ring (Fig. 5). The chains are formed by a glide plane in the space group $P2_1/c$ and proceed in direction of the *a*-axis. The SO₂ group is not involved.

In the structure **3e** (Fig. 6), only the intramolecular hydrogen bonds C(13)-H(13)...F(2) and C(1)-H(1)...O(3)-C(10) exist in the solid state. The N-aryl and 4-aryl ring maintain angles of 140.2° and 113.9° with the isothiazole plane.

The bicyclic 1-oxide **2f** (Fig. 7) shows intermolecularly stabilized associations with participation of the allylic methylene groups, the carbonyl group, and the chloro atoms (3.139 Å and 3.848 Å) in the three further molecules. Therefore the structure exists in the two-dimensional network with hydrogen bonds. The N-aryl group is 51.0° out of the plane of the isothiazole ring. The connections of the molecules in the direction of the *a*-axis is built up by the atoms C(7F)-H(7F) \cdots O(1E)-C(1E) by translation, and in the *b*-direction with the atoms C(4E)-H(4E) \cdots Cl(1B) also by translation; the S-O bonds are not involved in the hydrogen bond system.

For a comparative study, we also investigated sultams **5b** and **5f** with 3-alkoxy substituents. Compound **5b** forms, surprisingly, new 'head-to-head' dimers in the solid-state with a 10 membered ring stabilized through two interactions C(1)-H(1)...O(2A)-S(1A) and C(1A)-H(1A)...O(2)-S(1) related by the centre of symmetry inversion (Fig. 8).

The sultam **5f** forms also centrosymmetric 'head-tohead' dimers. These dimers are then translated along the *a*-axis by the slipping-mirror-plane *a*. For the sake of clearness, the *p*-chloro phenyl ring is not shown in Fig. 8. The torsion angle between the isothiazole ring and the N-aryl substituent is 9.5° in **5b** and 12.7° in **5f**, respectively.

Fig. 7. Two dimensional network of 2f.

In conclusion, the discussed sultams and the sultim were found to exist as centrosymmetric dimers, polymer structures and a two-dimensional network through predominantly weak intermolecular hydrogen bonds with participation of CO, SO₂, aromatic CH, CH₂ groups, and also a chloro substituent.

The 3-oxosultams **3a** and **3c** form weak hydrogen bonds between the O-acceptor of the SO₂ group and the aromatic CH donor function of a aryl ring. If there is only one chloro substituent in the N-aryl ring, a tetrameric structure **3a** is created by a second C- $H \cdots O$ -S-O hydrogen bond, the strong O-acceptor of the CO group does not participate. In the case of two chloro substituents in the N-aryl ring and another 4aryl substituent in **3c**, the CO group forms additional hydrogen bonds with the aromatic CH function of the N-aryl ring. In 3-alkoxy sultams **5b**, **f**, 1,1-dioxides without a CO function, intermolecular O-S-O···H-C hydrogen bonds to centrosymmetric dimers are also found.

Surprisingly, a two dimensional network with one weak C=O···H-CH and another Cl···H-CH hydrogen bond was found in the 1-oxide **2f**. The participation of the SO group, a strong hydrogen bond acceptor, could not be observed.

The 3-oxosultam **3d** shows the typical polymer structure through the strong $O-H\cdots O=C$ hydrogen bonds.

Fig. 8. The centrosymmetric dimers of **5b** (top) and **5f** (bottom) with $C(1)-H(1)\cdots O(2)-S(1)$ hydrogen bonds.

Experimental Section

General. M. p.: Boetius micro-melting-point apparatus; corrected. IR spectra: Genisis FTIR Unicam Analytical System (ATI Mattson); KBr pellets; values in cm⁻¹. ¹H NMR: Varian Gemini-200 and Varian Unity-400; δ in ppm rel. to TMS as internal standard, *J* in Hz. ¹³C NMR spectra: 50 or 100 MHz, recorded on the above-mentioned spectrometers. ¹⁹F NMR spectrum has also been measured at 188 MHz

on the named spectrometer with CFCl₃ as standard. MS: Quadrupol-MS VG 12-250; 70 eV. Elemental analysis: Heraeus CHNO Rapid Analyzer.

Syntheses. The salts 1c-e were prepared according to the literature procedure [6d]. 1c: yield 91%, m.p. 147–148 °C; 1d: yield 78%, m.p. 115–116 °C; 1e: yield 73%, m.p. 101–104 °C. The 1-oxide 2f is described in [2c], the 3-oxosultam 3a in [6d], and the 3-alkoxysultams 5b, f in [8,9].

2-Aryl-5-methyl-4-phenyl-2,3-dihydro-isothiazol-3-one 1,1-dioxide (**3**)

 H_2O_2 (0.7 ml, 30%) was added to a stirred suspension of 1 (0.26 mmol) in AcOH (0.7 ml) at 80 °C. After 8 h a colorless precipitate 3 crystallized. The crude product was washed with H_2O , recrystallized from ethanol.

2-(2,5-Dichlorophenyl)-5-methyl-4-phenyl-2,3-dihydroisothiazol-3-one 1,1-dioxide (**3c**)

Yield: 56%. M. p. 143 – 145 °C. – IR (KBr): v = 1160s (SO₂), 1332s (SO₂), 1737s (CO). – UV (ethanol): λ_{max} (lg ε): 205.5 (3.92) nm. – ¹H NMR ([D₆]-DMSO): $\delta = 2.55$ (s, 3H, 5-CH₃), 7.60 – 7.84 (m, 8H, arom. H). – ¹³C NMR ([D₆]-DMSO): $\delta = 9.3$ (5-CH₃), 127.8, 129.0, 129.5, 130.9, 131.3, 132.8, 133.0, 133.1, 133.9, 134.6, 134.9 (C-4), 145.4 (C-5), 159.3 (C-3). – MS: m/z = 368.0 (M^{+•}). – C₁₆H₁₁Cl₂NO₃S (368.24): calcd. C 52.19, H 3.01, N 3.80, S 8.71; found C 52.31, H 2.98, N 3.76, S 8.78.

2-(2-Hydroxyphenyl)-5-methyl-4-phenyl-2,3-dihydroisothiazol-3-one 1,1-dioxide (**3d**)

Yield: 38%. M. p. 187–189 °C. – IR (KBr): v = 1132s (SO₂), 1328s (SO₂), 1734s (CO). – UV (ethanol): λ_{max} (lg ε): 210.5 (4.20) nm. – ¹H NMR ([D₆]-DMSO): $\delta = 2.33$ (s, 3H, 5-CH₃), 7.00–7.14 (m, 4H, arom. H), 7.35–7.66 (m, 5H, arom. H). – ¹³C NMR ([D₆]-DMSO): $\delta = 8.0$ (5-CH₃), 117.3, 120.2, 127.6, 128.7, 130.1, 130.2, 131.4, 132.0, 133.1, 133.9 (C-4), 145.6 (C-5), 158.9 (C-3), 161.7. – MS: m/z = 315.0 (M^{+•}). – C₁₆H₁₃NO₄S (315.35): calcd. C 60.94, H 4.16, N 4.44, S 10.17; found C 61.03, H 4.06, N 4.51, S 10.23.

- 2nd communication: B. Schulze, K. Taubert, F.G. Gelalcha, C. Hartung, J. Sieler, Z. Naturforsch. 57b, 383 (2002).
- [2] a) K. Taubert, S. Kraus, B. Schulze, Sulfur Reports 23, 79 (2002); b) B. Schulze, D. Gidon, A. Siegemund, L. L. Rodina, Heterocycles 61, 639 (2003); c) A. Siegemund, C. Hartung, S. Baumann, B. Schulze, Helv. Chim. Acta 87, 376 (2004); d) A. De, Prog. Med. Chem. 18, 117 (1981); e) R. Miedzybrodzki, Postepy Hig. Med. Dosw. 57, 617 (2003).
- [3] M. Davis, Adv. Heterocycl. Chem. 38, 105 (1985).
- [4] B. Schulze, G. Kirsten, S. Kirrbach, A. Rahm, H. Heimgartner, Helv. Chim. Acta 74, 1059 (1991).
- [5] B. Schulze, K. Illgen, J. Prakt. Chem. 339, 1 (1997).
- [6] a) B. Schulze, U. Dietrich, K. Illgen, J. Sieler, Russ. J. Org. Chem. **30**, 1446 (1994); b) B. Schulze,

2-(4-Trifluoromethylphenyl)-5-methyl-4-phenyl-2,3-dihydroisthiazol-3-one 1,1-dioxide (**3e**)

Yield: 43%. M. p. 124–125 °C. – IR (KBr): $\nu = 1124s$ (SO₂), 1332s (SO₂), 1737s (CO). – UV (ethanol): λ_{max} (lg ε): 223.0 (4.19) nm. – ¹H NMR ([D₆]-DMSO): $\delta = 2.47$ (s, 3H, 5-CH₃), 7.56–7.65 (m, 5H, arom. H), 7.83–8.00 (m, 4H, arom. H). – ¹⁹F NMR ([D₆]-DMSO): $\delta = -63.88$ (s, 3F, CF₃). – ¹³C NMR ([D₆]-DMSO): $\delta = 8.3$ (5-CH₃), 124.6, 127.1, 128.3, 128.8, 130.1, 130.3, 130.5, 131.1, 134.1 (C-4), 134.6, 145.3 (C-5), 159.3 (C-3). – MS: $m/z = 367.0 (M^{+\bullet})$. – C₁₇H₁₂F₃NO₃S (367.35): calcd. C 55.58, H 3.29, N 3.81, S 8.73; found C 55.49, H 3.18, N 3.98, S 8.75.

Single crystal X-ray diffractometry

The crystals of 3a, 3c-e were obtained from acetone. The intensities were measured on a Siemens SMART CCD diffractometer. The relevant crystallo-graphic data are listed in Table 1. The structures were solved by direct methods with SHELXS-97 [10]. The refinement was done with SHELXL-97 [10]. The details of the structure analyses have been deposited at the Cambridge Crystallographic Data Centre, CCDC-245824 for 3a, -245825 for 3c, -245826 for 3d and -245827 for 3e. The copies of the data can be obtained, free of charge, from CCDC, 12 Union Road, Cambridge, CB2 1EZ UK (fax: +44-1233-336033; e-Mail: deposite@ccdc.cam.ac.uk; internet: //www.ccdc.cam.ac.uk).

Acknowledgements

The work was supported by Deutsche Forschungsgemeinschaft and by Fonds der Chemischen Industrie.

S. Kirrbach, K. Illgen, P. Fuhrmann, Tetrahedron 52, 783 (1996); c) C. Hartung, K. Illgen, J. Sieler, B. Schneider, B. Schulze, Helv. Chim. Acta 82, 685 (1999); d) K. Taubert, J. Sieler, L. Hennig, M. Findeisen, B. Schulze, Helv. Chim. Acta 85, 183 (2002).

- [7] M. Gütschow, M. Pietsch, K. Taubert, T.H.E. Freysoldt, B. Schulze, Z. Naturforsch. 58b, 111 (2003).
- [8] K. Taubert, A. Siegemund, A. Eilfeld, S. Baumann, J. Sieler, B. Schulze, Synthesis 2265 (2003).
- [9] A. Siegemund, C. Hartung, A. Eilfeld, J. Sieler, B. Schulze, Z. Naturforsch. 59b, 478 (2004).
- [10] G. M. Sheldrick, SHELXL-97, a program for solution and the refinement of X-ray crystal structures, Univ. of Göttingen (1997).