Rapid Evaluation of Suitable Substrates with High Affinity to Artificial Caffeine Receptors by MS Based Techniques

Daniela Mirk\textsuperscript{a,b}, Heinrich Luftmann\textsuperscript{b}, and Siegfried R. Waldvogel\textsuperscript{a,b}

\textsuperscript{a} Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
\textsuperscript{b} Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstr. 40, D-48149 Münster, Germany

Reprint requests to Prof. Dr. S. R. Waldvogel. Fax: +49(0) 228-73 9608.
E-mail: waldvogel@uni-bonn.de

Z. Naturforsch. \textbf{60b}, 1077 – 1082 (2005); received July 29, 2005

A modification of our triphenylene ketal based receptor facilitates electrospray tandem mass spectrometry investigations. Binding affinities of eleven potential substrates, \textit{e.g.} caffeine and other xanthine alkaloids, are probed in the gas phase with collision induced dissociation. The relative stabilities of the substrate-receptor complexes are rapidly determined and the findings are correlated with the corresponding results in solution.

\textit{Key words}: Supramolecular Chemistry, Mass Spectrometry, Host-Guest Complexes, Receptors