Surprising Insights in the Various Molecular Structures of Hypercoordinate Bis(oxinato)silicon Complexes

Jörg Wagler^a, Michael Schley^a, Daniela Gerlach^a, Uwe Böhme^a, Erica Brendler^b, and Gerhard Roewer^a

Leipziger Straße 29, D-09596 Freiberg, Germany

Reprint requests to Dr. Jörg Wagler. Fax: (+49) 3731 39 4058. E-mail: joerg.wagler@chemie.tu-freiberg.de

Z. Naturforsch. **60b**, 1054 – 1064 (2005); received July 7, 2005

The syntheses of two cyclic diorganosilicon enamines $RPhSi(o-O-C_6H_4-C(NCH_2Ph)=CH_2)$ [R = Ph (2a), Me (2b)] are described. These compounds react with 8-oxyquinoline leading to bis(oxinato)silicon complexes $RPhSi(oxinate)_2$ [R = Ph (5a), Me (5b)]. Their X-ray structures reveal hexacoordination of the Si atom with the monodentate substituents in *cis*-positions and N atoms as well as O atoms in *trans*-positions.

In crystalline dimethylbis(oxinato)silicon, Me₂Si(oxinate)₂ (7), the silicon atom is only bicapped tetrahedrally coordinated, while for dichlorobis(oxinato)silicon, Cl₂Si(oxinate)₂ (8), there is an octahedral coordination of the Si atom with chlorine atoms in *trans*-positions. This conclusion is based on the results of spectroscopic analysis (IR, ²⁹Si CP/MAS NMR) as well as quantum chemical calculations. The first example of a silicon-bis-oxinate with the N→Si dative bonds in a *trans*-arrangement has been detected in the hexacoordinate silicon tris-chelate (oxinate)₂Si(PhN-CH₂CH₂-NPh) (11). Its configuration was proven by X-ray structure analysis. Thus, for hexacoordinate bis(oxinato)silicon compounds three new architectures were found which complement the previously established building pattern of the N,N'-cis-O,O'-trans-bis(oxinato)silicon complexes.

The mer-tris(oxinato)siliconium cation (9^+) (its configuration being proven by 1 H and 13 C NMR spectroscopy) features at least three coordination patterns with (O,O;N,N)-cis,cis-, -cis,trans- as well as -trans, cis-arrangements of two oxinate ligands.

Key words: Enamine, Hypercoordination, Oxinate, Silicon

 ^a Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg
^b Institut für Analytische Chemie, Technische Universität Bergakademie Freiberg,