The Stannide LiRh₃Sn₅ – Synthesis, Structure, and Chemical Bonding

Puravankara Sreeraj^a, Dirk Johrendt^b, Helen Müller^b, Rolf-Dieter Hoffmann^a, Zhiyun Wu^a, and Rainer Pöttgen^a

^a Institut für Anorganische und Analytische Chemie, Sonderforschungsbereich 458 and NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster (Germany)

b Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5 – 13 (Haus D), D-81377 München, Germany

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. **60b**, 933 – 939 (2005); received July 4, 2005

The lithium rhodium stannide LiRh₃Sn₅ was synthesized from the elements in a sealed tantalum tube and investigated *via* X-ray powder and single crystal diffraction: *Pbcm*, a = 538.9(1), b = 976.6(3), c = 1278.5(3) pm, wR2 = 0.0383, 1454 F^2 values, and 44 variables. Refinement of the occupancy parameters revealed a lithium content of 92(6)%. LiRh₃Sn₅ crystallizes with a new structure type. The structure is built up from a complex three-dimensional [Rh₃Sn₅] network, in which the lithium atoms fill channels in the *b* direction. The [Rh₃Sn₅] network is governed by Rh–Rh (274–295 pm), Rh–Sn (262–287 pm), and Sn–Sn (289–376 pm) interactions. The lithium atoms have CN 13 (4 Rh+9 Sn). Electronic band structure calculations and the COHP bond analysis reveal strong Rh–Sn bonds and also significant Rh–Rh bonding within the Rh₃Sn₅ network, which is additionally stabilized by weak but frequent Sn–Sn interactions.

Key words: Lithium Stannide, Crystal Chemistry, Chemical Bonding