Preparation, Crystal Structure, Properties, and Electronic Band Structure of TlTaSe₃

Christoph L. Teske^a, Wolfgang Bensch^a, Diana Benea^b, Jan Minár^b, Alexander Perlov^b, and Hubert Ebert^b

Reprint requests to Dr. C. Teske. Fax: +49 431 880 1520. E-mail: cteske@ac.uni-kiel.de

Z. Naturforsch. **60b**, 858 – 866 (2005); received June 10, 2005

TITaSe₃ was prepared from a fused mixture of $Tl_4Ta_2Se_{11}$, Ta and Se in the molar ratio 1:2:1. The compound shows dimorphism with H-TITaSe₃, hexagonal, space group $P6_3/mmc$, a=7.2436(6), c=5.9736(6) Å, c/a=1.213 and O-TITaSe₃, orthorhombic, space group Pnma, a=9.554(13), b=3.6244(6), c=14.7271(17) Å. The crystal structure of H-TITaSe₃ is isotypic to BaVSe₃ whereas that of O-TITaSe₃ is closely related to the NH₄CdCl₃-type. Characteristic features of the structures are: $\frac{1}{2}$ [TaSe₃²⁻] chains of regular octahedra sharing faces along [001] for the hexagonal form and columns of double edge-sharing octahedra $\frac{1}{2}$ [Ta₂Se₆²⁻] running along [010] for O-TITaSe₃. The columns are each separated by Tl^+ ions with the coordination number CN = 12 and CN = 8 respectively. The structures are compared and discussed in context with other isotypic structures of chalcogenides. The orthorhombic modification O-TITaSe₃ is a semiconductor while H-TITaSe₃ shows conventional metallic behaviour. The electronic structures of both modifications are discussed on the base of band structure calculations performed within the framework of density functional theory.

Key words: Thallium Tantalum Selenide, Crystal Structure, Dimorphic, Properties, Electronic Band Structure

^a Institut für Anorganische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 6/7, D-24098 Kiel, Germany

München, Department Chemie – Physikalische Chemie,
Ludwigs-Maximilians-Universität, Butenandtstraße 11, D-81377 München