High-Pressure Synthesis and Crystal Structure of the New Orthorhombic Polymorph β -HgB $_4$ O $_7$

Holger Emme^a, Matthias Weil^b, and Hubert Huppertz^a

 ^a Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5 – 13 (Haus D), 81377 München, Germany
^b Institut für Chemische Technologien und Analytik der Technischen Universität Wien, Getreidemarkt 9 / 164-SC, 1060 Wien, Austria

Reprint requests to Priv.-Doz. Dr. H. Huppertz. E-mail: huh@cup.uni-muenchen.de

Z. Naturforsch. **60b.** 815 – 820 (2005); received April 27, 2005

The new orthorhombic polymorph β -HgB₄O₇ has been synthesized under high-pressure and high-temperature conditions in a Walker-type multianvil apparatus at 7.5 GPa and 600 °C. β -HgB₄O₇ is isotypic to the known ambient pressure phases MB_4O_7 (M=Sr, Pb, Eu) and the high-pressure phase β -CaB₄O₇ crystallizing with two formula units in the space group $Pmn2_1$ with lattice parameters a=1065.6(2), b=438.10(9), and c=418.72(8) pm. The relation of the crystal structure of the high-pressure phase β -HgB₄O₇ to the normal pressure phase α -HgB₄O₇ as well as the relation to the isotypic phases MB_4O_7 (M=Sr, Pb, Eu) and β -CaB₄O₇ are discussed.

Key words: High-Pressure, Mercury, Borates, Crystal Structure