Triterpenoids from *Hippocratea excelsa*. The Crystal Structure of 29-Hydroxytaraxerol

Amilcar R. Aguilar-Gonzalez^a, Gonzalo J. Mena-Rejón^a, Nayely Padilla-Montaño^a, Alfredo Toscano^b, and Leovigildo Quijano^b

^a Labratorio de Química Orgánica de Investigación, Facultad de Química, Universidad Autónoma de Yucatán, Calle 41 No. 421, Col. Industrial, C.P. 97150, Mérida, Yucatán, México
^b Instituto de Química, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, México, D.F., México

Reprint requests to Dr. L. Quijano. Fax: 5255 56162217. E-mail: quijano@servidor.unam.mx

Z. Naturforsch. 60b, 577 – 584 (2005); received October 12, 2004

The root bark of *Hippocratea excelsa* afforded a new derivative of β -amyrin, which was identified as its ferulate, together with components new in this species. They were identified as the rare 29-hydroxystaraxerol, 29-hydroxyglutinol, 29-hydroxyfriedelin and the sterol 6 β -hydroxystigmast-4-en-3-one. The known triterpene quinone methides pristimerin and tingenone characteristics of this genus, β -sitosterol, *trans*-polyisoprene, squalene, β -amyrin, and the alditol galacticol characteristic of the Celastraceae were also isolated. The structures were established on the basis of spectral analysis, including homo- and heteronuclear correlation NMR experiments (COSY, DEPT, HMQC and HMBC) and by comparison with data reported in the literature. The structure of 29-hydroxystaraxerol was confirmed by X-ray diffraction. The antimicrobial and antifungal activities of the compounds were studied, but no significant activity was found.

Key words: Hippocratea, Triterpenoids, NMR