La₃Cl₃BC – Structure, Bonding and Electrical Conductivity

Hui-Yi Zeng^a, Hiroki Okudera^a, Chong Zheng^b, Hansjürgen Mattausch^a, Reinhard K. Kremer^a, and Arndt Simon^a

^a Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
^b Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb IL 60115, USA

Reprint requests to Dr. Hansjürgen Mattausch. Fax: 49-711-689-1091. E-mail: Hj.Mattausch@fkf.mpg.de

Z. Naturforsch. 60b, 499-504 (2005); received February 8, 2005

A new rare earth carbide boride halide, La₃Cl₃BC, has been prepared by heating a mixture of stoichiometric quantities of LaCl₃, La, B and C at 1050 °C for 10 days. La₃Cl₃BC (La₃Br₃BC type) crystallizes in the monoclinic system with space group $P2_1/m$ (No. 11), a = 8.2040(16), b = 3.8824(8), c = 11.328(2) Å, $\beta = 100.82(3)^\circ$. In the structure, monocapped trigonal prisms containing B–C units are condensed into chains along the *b* direction, and the chains are further linked by Cl atoms in the *a* and *c* directions. The condensation results in a polymeric anion $\frac{1}{2}$ [BC] with a spine of B atoms in a trigonal prismatic coordination by La, and the C atoms attached in a square pyramidal coordination. The B–B and B–C distances are 2.16 and 1.63 Å, respectively. La₃Cl₃BC is metallic. The EH calculation shows that the distribution of valence electrons can be formulated as $(La^{3+})_3(Cl^-)_3(BC)^{5-} \cdot e^-$.

Key words: Rare Earth Boride Carbide Halides, Interstitial Atom, Crystal Structure, Electrical Conductivity, Electronic Structure