Neue Chalcogenophosphate: KBaPS₄, KBaPSe₄ und Ba₃PO₄PSe₄

New Chalcogenophosphates: KBaPS₄, KBaPSe₄, and Ba₃PO₄PSe₄

Stefan Jörgens und Albrecht Mewis

Institut für Anorganische Chemie und Strukturchemie II, Heinrich-Heine-Universität, Universitätsstraße 1, D-40225 Düsseldorf, Germany

Sonderdruckanforderungen an Prof. Dr. A. Mewis. E-mail: Albrecht.Mewis@uni-duesseldorf.de

Z. Naturforsch. **60b**, 431 – 436 (2005); eingegangen am 13. Dezember 2004

Colourless single crystals of KBaPS₄ (a = 11.587(2), b = 6.700(1), c = 10.118(2) Å), and pale orange ones of KBaPSe₄ (a = 11.972(2), b = 6.973(1), c = 10.388(2) Å) were obtained by reactions of Ba₃(PS₄)₂ and Ba₃(PSe₄)₂, respectively, with KCl (790 °C; 30 h). The isotypic compounds crystallize with a slightly modified TlEuPS₄ type structure (Pnma, Z = 4); that is, the characteristic units are distorted discrete PX₄ tetrahedra (X: S, Se) interconnected by K⁺ and Ba²⁺. However, due to the strong distortion of the trigonal X_6 prisms along [001] the coordination numbers increase from 8 to 9 for the barium atoms and from 8 to 11 for the potassium atoms. Orange crystals of Ba₃PO₄PSe₄ (a = 6.779(1), b = 7.108(1), c = 12.727(3) Å; $\alpha = 82.45(3)^{\circ}$, $\beta = 78.88(3)^{\circ}$, $\gamma = 81.34(3)^{\circ}$) resulted as a by-product of the synthesis of Ba₃(PSe₄)₂. The compound crystallizes in a new type of structure ($P\bar{1}$; Z = 2) and is the first chalcogenophosphate with discrete PO₄ and PSe₄ tetrahedra. The coordination polyhedra of the barium atoms are formed by both chalcogen atoms.

Key words: Chalcogenophosphates, Potassium, Barium, Crystal Structures