On the Solid Solutions $Eu_{1-x}Pt_2In_x$, $Gd_{1-x}Pt_2In_x$, and $Tm_{1-x}Ni_2In_x$

Mar'yana Lukachuk^a, Yaroslav M. Kalychak^b, Tom Nilges^a, and Rainer Pöttgen^a

 ^a Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
^b Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla and Mephodiya Street 6, 79005 Lviv, Ukraine

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 60b, 393-397 (2005); received January 14, 2005

The binary cubic Laves phases EuPt₂, GdPt₂, and TmNi₂ form extended solid solutions Eu_{1-x}Pt₂In_x, Gd_{1-x}Pt₂In_x, and Tm_{1-x}Ni₂In_x. Samples within these homogeneity ranges have been prepared from the elements by arc-melting on water-cooled copper chills or by induction melting in sealed tantalum tubes and subsequent annealing. The indides were characterized by X-ray powder and single crystal diffraction: MgCu₂ type, $Fd\bar{3}m$, a = 770.68(6) pm, wR2 = 0.0251, $67 F^2$ values, 6 variables for Eu_{0.94(3)}Pt₂In_{0.06(3)}, a = 769.16(6) pm, wR2 = 0.0244, $67 F^2$ values, 6 variables for Eu_{0.85(2)}Pt₂In_{0.15(2)}, a = 760.12(9) pm, wR2 = 0.0693, $65 F^2$ values, 6 variables for Gd_{0.79(5)}Pt₂In_{0.21(5)}, and MgCu₄Sn type, $F\bar{4}3m$, a = 700.27(6) pm, wR2 = 0.0368, BASF = 0.13(2), 175 F² values, 8 variables for TmNi₄In. The platinum and nickel atoms build up three-dimensional networks of corner-sharing Pt_{4/2} and Ni_{4/2} tetrahedra. These networks leave larger voids of coordination number 16 that are filled with the rare earth (*RE*) and the indium atoms. While the thulium and indium atoms are ordered in TmNi₄In, one observes mixed *RE*/In occupancies in Eu_{0.94(3})Pt₂In_{0.06(3)}, Eu_{0.85(2})Pt₂In_{0.15(2)}, and Gd_{0.79(5})Pt₂In_{0.21(5)}.

Key words: Solid Solution, Crystal Structure, Solid State Synthesis