The Mo_2FeB_2 - and Mn_2AlB_2 -Type Modifications of RE_2Ni_2Cd (RE = La, Pr, Nd, Sm, Tb, Dy)

Thomas Fickenscher^a, Ute C. Rodewald^a, Dirk Niepmann^a, Ratikanta Mishra^b, Marcus Eschen^a, and Rainer Pöttgen^a

^a Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany

b Applied Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. **60b**, 271 – 276 (2005); received December 3, 2004

The rare earth metal (RE)-nickel-cadmium intermetallics RE_2Ni_2Cd (RE = La, Pr, Nd, Sm,Tb, Dy) were prepared from the elements in sealed niobium or tantalum tubes in a water-cooled sample chamber of a high-frequency furnace. They crystallize with a tetragonal Mo₂FeB₂ type low-temperature modification, space group P4/mbm, and an orthorhombic Mn₂AlB₂ type hightemperature modification, space group Cmmm. The cadmium compounds were characterized through their X-ray powder patterns. Five structures of the low-temperature modifications were refined from X-ray single crystal diffractometer data: a = 763.76(9), c = 387.26(8) pm, wR2 = 0.046, $205 F^2$ for La₂Ni_{1.67(1)}Cd; a = 752.93(7), c = 380.95(6) pm, wR2 = 0.061, 260 F² for Pr₂Ni₂Cd; a = 0.061750.88(9), c = 378.33(7) pm, wR2 = 0.051, $195 F^2$ for Nd₂Ni₂Cd; a = 743.6(1), c = 374.0(1) pm, wR2 = 0.036, 386 F^2 for $Sm_2Ni_{1.93(1)}Cd$; a = 734.9(1), c = 366.1(2) pm, wR2 = 0.030, 252 F^2 for Dy₂Ni_{1.94(1)}Cd, with 13(12) variables per refinement. The 4g nickel site is only fully occupied in the neodymium and the praseodymium compound. Both modifications can be considered as intergrowths of distorted AlB₂ and CsCl related slabs. In both modification the nickel and cadmium atoms build up two-dimensional [Ni₂Cd] networks. In the low-temperature modifications the nickel atoms form pairs, while nickel zig-zag chains occur in the high-temperature modifications. These nickel fragments are condensed via the cadmium atoms. The crystal chemistry and the chemical bonding in these intermetallics is discussed.

Key words: Rare Earth Compounds, Cadmium, Phase Transition, Crystal Chemistry