1,1-Ethylboration of Di(alkyn-1-yl)silanes with Two and Three Si-H Functions. New Silacyclopentadienes

Bernd Wrackmeyer^a, Oleg L. Tok^a, Azim Khan^b, and Amin Badshah^c

- ^a Universität Bayreuth, Anorganische Chemie II, D-95440 Bayreuth, Germany
- ^b Department of Chemistry, Gomal University, NWFP, Pakistan
 ^c Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan

Reprint requests to Prof. Dr. B. Wrackmeyer. E-mail: b.wrack@uni-bayreuth.de

Z. Naturforsch. **60b**, 251 – 258 (2005); received August 24, 2004

The reaction of the di(alkyn-1-yl)silanes $Me_2Si(C \equiv CSiMe_2H)_2$ **1a** and $Me(H)Si(C \equiv CSiMe_2H)_2$ **1b** with triethylborane was studied. In the case of **1a**, the 4-ethyl-3-diethylboryl-1,1-dimethyl-2,5-bis(dimethylsilyl)-1-sila-2,4-cyclop entadiene **2a** was the sole product. In the case of **1b**, the analogous silole **2b** was formed along with two other products which were identified as di(alkenyl)silanes **3b** and **4b**, in which different types of electron-deficient Si-H-B bridges could be detected. All products were characterised by consistent sets of solution NMR data (1H , ^{11}B , ^{13}C and ^{29}Si NMR). The coupling constants $^1J(^{13}C, ^{13}C)$ were measured for **2a** and calculated by using DFT methods (B3LYP/6-311+G(d,p) level of theory).

Key words: Alkynes, Boranes, Siloles, Si-H Activation, NMR