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Hydroalumination of HsCg-C=N with di(tert-butyl)aluminum hydride 1 or the corresponding di-
ethyl compound 2 yielded the products tBuy AI-N=C(CgHs)H 3 and Ety Al-N=C(CgHs)H 4, respec-
tively, both of which form dimers possessing AL N, heterocycles with two exocyclic C=N double
bonds. NMR spectroscopic data indicate the occurrence of cigltrans isomers in solutions of com-
pound 4. The dimerization of the imide via Al-N interactions was prevented by employing the hydride
[(Me3Si),HC],AlH 6 bearing the bulky bis(trimethylsilyl)methyl substituents. Its reaction with ben-
zonitrile yielded the compound R, Al-N=C(CgH5)H(N=C-CgHs) 7 [R = CH(SiMe3),], in which the
coordinative saturation of the aluminum atoms was achieved by adduct formation with one molecule
of the starting nitrile. In these cases the C=N triple bond inserted completely into the Al-H bond
of the hydride. In contrast, the reaction of tert-butyl isonitrile afforded the product tBu, Al-C(H)=N-
CgHs 8 by the insertion of its terminal carbon atom into the Al-H bond. Hence, it has a geminal
arrangement of the aluminum and hydrogen atoms. Dimerization of 8 yielded a six-membered hete-
rocycle. Hydroalumination does not occur upon treatment of the hydride 1 with trimethylsilylnitrile.
Instead, the Si-CN bond was cleaved, and the aluminum cyanide (tBuAl-C=N)4 9 was isolated in a

high yield.
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Introduction

The addition of Al-H bonds to C=C double or
C=C triple bonds (hydroalumination) is a well-known
method for the reduction of unsaturated organic com-
pounds [1]. Usually, the organoaluminum intermedi-
ates were not isolated, but hydrolyzed in situ by the
treatment of the reaction mixture with an excess of wa-
ter to finally isolate the corresponding hydrocarbons.
Thus, information from literature concerning the true
structures of these aluminum compounds is rather lim-
ited and in some cases misleading. In some recent in-
vestigations we were able to isolate and completely
characterize the organoaluminum products of the reac-
tions between dialkylaluminum hydrides and organic
alkynes [2]. Crystal structure determinations reveal the
selective cis-addition of the Al-H bonds, and vinyla-
luminum compounds could be isolated in high yields.
Aluminum alkynides afforded novel products contain-
ing clusters formed by aluminum and carbon atoms

(carbaalanes) upon hydroalumination and release of
trialkylaluminum derivatives [3, 4].

Hydroalumination of heteronuclear double or triple
bonds was reported to a lesser extent. Nitriles re-
acted with di(isobutyl)aluminum hydride by the for-
mation of imines [iBu,Al-N=C(H)R],, which form
dimers possessing Al,N; heterocycles [5,6]. Orga-
noelement dihydrides of aluminum and gallium are sta-
ble with very bulky substituents only [7]. Double hy-
droalumination was reported to occur upon treatment
of those dihydrides with nitrile or isonitrile [8]. An
adduct of aluminum trihydride, AIH3 - NMegs, reacted
with several nitriles to yield aluminum-nitrogen com-
pounds which possess hexagonal-prismatic cages of al-
ternating aluminum and nitrogen atoms [9]. A simi-
lar adduct gave hydrazine derivatives upon treatment
with tetramethyl-2,3-diazabutadiene by the complete
hydroalumination of both C=N double bonds [10].
This reaction opens a novel route for the synthesis
of aluminum hydrazides, which are of interest owing
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to their capability to afford aluminum nitride on ther-
molysis. In contrast, organoaluminum or gallium hy-
drides usually gave the addition of the E-H bonds to
one C=N bond of the diazabutadienes only to yield
molecular backbones comprising a N-C single and a
N-C double bond [11,12]. In some cases, cleavage of
the N-N bond occurred [12]. Here we report on our
first attempts on the hydroalumination of organic ni-
triles or isonitriles by dialkylaluminum hydrides as part
of a broader research activity, in which we hope to
achieve double additions by an excess of the hydrides
or condensation reactions by the release of trialkyla-
luminum. The last reaction may result in the forma-
tion of oligomeric or polymeric species similar to those
obtained with aluminum alkynides before [3]. Further-
more, we hope to stabilize unusual bonding situations
in monomeric products, for instance, by employing
bulky substituents.

Preparative Results

Reactions of dialkylaluminum hydrides with benzoni-
trile

Di(tert-butyl)aluminum hydride reacted with ben-
zonitrile in n-pentane at room temperature to afford
the expected product of hydroalumination, [tBu,Al-
N=C(CgHs)H]> (3), of which yellow crystals were iso-
lated in 85% yield (eq. (1)). The most characteristic
result of the NMR spectroscopic characterization is
the strong low-field shift of the resonance of the sin-
gle proton which is attached to the carbon atom of the
C=N double bond (6 = 9.13). Compound 3 is ther-
mally quite stable and melts at 220 °C without decom-
position.

While 3 was formed in a rather selective reaction,
the treatment of benzonitrile with diethylaluminum hy-
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dride gave a mixture of products. Repeated recrystal-
lization yielded a crystalline product (4), which, how-
ever, revealed two resonances of protons attached to
C=N bonds (6 = 8.84 and 8.82) in an integration ra-
tio of 1.0 to 0.44. While only one quartet was ob-
served for the methylene protons of the ethyl groups
attached to aluminum, three triplets of methyl protons
were detected at 6 = 1.42, 1.32 and 1.23. The first
and third resonances possess equal intensities (inte-
gration ratio 0.22 to 1.0 to 0.22). Warming to 360 K
gave a simpler spectrum with only one singlet at § =
8.90 and a broad resonance of the methyl protons at
0 = 1.25. The integration ratio is in accordance with
the expected formula of the hydroalumination prod-
uct, [EtoAl-N=C(CgHs)H]> 4 (eq. (1)). The TH NMR
data verify a dynamic equilibrium in solution, which
may be caused by the occurrence of cis/trans isomers
(Scheme 1). Similar findings were reported for some
dimeric aluminum or gallium hydrazides, for instance,
possessing four-membered Al,N, or Ga;N, heterocy-
cles and exocyclic N-N bonds [13]. The trans-isomer
was detected in the solid state by crystal structure
determination (see below). It possesses a center of
symmetry, and its ethyl groups are equivalent. Thus,
the resonances of the main species observed in the
H NMR spectra can clearly be assigned to that par-
ticular isomer. The configuration of the cis-isomer re-
sults in two chemically different AIEt, groups, which
is in accordance with the occurrence of two triplets
of the methyl protons at room temperature. Fast ex-
change at elevated temperature resulted in a simpler
spectrum showing only one average species. The dif-
ference of the chemical shifts of the methylene pro-
tons seems to be too small to result in a splitting of
their resonance. The activation barrier for the exchange
process was estimated to be about 75 kJ/mol [14].
The reaction of trichloroacetonitrile Cl3C-C=N with
di(tert-butyl)aluminium hydride afforded a mixture of
products. One resonance in the *H NMR spectrum at
6 = 8.09 may be assigned to an N=C-H group, it is,
however, slightly outside the range usually observed.
Beside one sharp resonance for tert-butyl groups, the
main-intensity is covered by very broad signals. Thus,
an unclear reaction course occurred, in which the de-
sired product may be formed as a minor component.
Few single crystals (compound 5) precipitated in the
NMR tube with toluene-Dg as a solvent. However, all
attempts to recrystallize the crude product from differ-
ent solvents in a preparative scale failed.
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Fig. 1. Molecular structure of compound 3. The ellipsoids
are drawn at the 40% probability level; hydrogen atoms
are omitted. Selected bond lengths [pm] and angles [°]
for the related compounds 3 to 5. 3: Al1-N1 196.4(1),
Al1-N1" 195.3(1), N1-C1 127.6(2), N1-Al1-N1" 82.73(4),
Al1-N1-Al1’ 97.27(4), Al1-N1-C1 124.69(8), Al1’-N1-C1
138.01(9), N1-C1-C2 128.8(1); N1” and Al1’ generated by
—x+1/2, —y+1/2, —z 4 AI1-N1 192.8(3), Al1-N1’
194.9(2), N1-C1 127.6(4), N1-Al1-N1" 84.2(1), Al1-N1-
All’ 95.8(1), Al1-N1-C1 138.4(2), Al1’-N1-C1 125.4(2),
N1-C1-C2 127.9(3); N1’ and Al1’ generated by —x-+ 1,
—y, —z+2. 5: Al1-N1 196.7(2), Al1-N1’ 200.4(1), N1-C1
125.1(3), N1-Al1-N1’ 81.34(8), Al1-N1-Al1’ 98.66(9), All-
N1-C1 138.3(2), Al1’-N1-C1 123.0(2), N1-C1-C2 127.5(2);
N1’ and Al1’ generated by —x+2, —y, —z+1.

Crystal structure determinations were conducted
with the three compounds described before (3 to 5).
The molecular structure of 3 is depicted in Fig. 1;
its legend summarizes the selected bond lengths and
angles of all compounds. They adopt centrosymmet-
ric structures and contain four-membered Al,N, het-
erocycles with two exocyclic C=N double bonds in
their molecular cores. All structural parameters are
close to standard values with a more or less signifi-
cant dependency on the steric demand and electronic
properties of the substituents [5,6,11,12]. The Al-

N bonds in the rings (3: 195.9 pm; 4: 193.9 pm;
5: 198.6 pm) are longest for the trichloro derivative
5, shortest for the less sterically crowded diethyl com-
pound 4. The transannular Al- - - Al contacts are 293.9,
287.6, and 301.2 pm, respectively. A relatively short
C=N bond length of 125.1 pm compared to 127.6 pm
for 3 and 4 was determined for the trichloroace-
tonitrile derivative 5. This difference may be caused
by the particular electron withdrawing properties of
the trichloromethyl group. The phenyl substituents at-
tached to the C=N groups of compounds 3and 4 are al-
most ideally in plane with the Al,N, heterocycles (an-
gles between the normals of the planes 8.3 and 16.1°,
respectively), which may be indicative for some -
interaction.

Reaction of [(Me3S),HC],Al-H with benzonitrile

The employment of very bulky substituents such as
the bis(trimethylsilyl)methyl group influences the re-
action course of hydroalumination as was observed in
our group several times before. Furthermore, the iso-
lation of a monomeric product possessing a coordina-
tively unsaturated aluminum atom attached to a C=N
double bond may succeed as an interesting aspect of
these experiments. The synthesis of the important start-
ing dialkylaluminum hydride, [(Me3Si);HC],AIH 6,
has been described by our group only recently [15],
an improved procedure is given in the Experimen-
tal Section. Treatment of benzonitrile with equimo-
lar quantities of 6 yielded a complex mixture of un-
known products, and we did not succeed in isolating
any constituent by recrystallization. In contrast, a sin-
gle product (7) was obtained and isolated in almost
quantitative yield, when we employed an excess of
benzonitrile (molar ratio 1:2, eq. (2)). The integration
ratio of the 'H NMR spectrum showed that the prod-
uct contains two phenyl groups per AIR, moiety, and
the IR spectrum confirms the coordination of an intact
benzonitrile molecule (ve—n = 2269 cm™~1). As was
shown by crystal structure determination, an adduct
had formed in which the expected product of hydroa-
lumination, [(Me3Si)2HC]2Al-N=C(CgHs)H, is stabi-
lized by the coordination of a benzonitrile ligand. The
formation of an adduct is also confirmed by the high-
field shift of the inner AIC(H)Si, protons, the reso-
nance of which (6 = —0.79) is in the characteristic
range of bis(trimethylsilyl)methyl compounds possess-
ing tetracoordinated aluminum atoms [16].

The molecular structure of 7 (Fig. 2) contains a
central aluminum atom attached to two bulky alkyl
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Fig. 2. Molecular structure of compound 7. The ellipsoids
are drawn at the 40% probability level; methyl groups of
the SiMes substituents and hydrogen atoms are omitted. Se-
lected bond lengths [pm] and angles [°]: Al-N1 182.3(2),
AI-N2 201.6(2), N1-C5 125.3(3), N2-C6 114.0(3), C5-C51
148.5(3), C6-C61 142.9(3), Al-N1-C5 138.6(2), N1-C5-C51
124.5(2), AlI-N2-C6 166.2(2), N2-C6-C61 179.1(3).

groups, an imino group via its nitrogen atom and a ben-
zonitrile ligand in a distorted tetrahedral coordination
sphere. Aluminum and hydrogen atoms of the starting
hydride are on the same side of the C=N double bonds
(cis-addition), as often observed for the hydroalumina-
tion of C=C triple bonds before [2]. The Al-N bond
lengths reflect the different bonding situations. A rel-
atively long distance (201.6 pm) compared to that to
the imino substituent (182.3 pm) was detected for the
coordinative bonding to the intact benzonitrile ligand.
The angle AI-N=C shows a small deviation from lin-
earity (166.2°), while, as expected, the N=C-C group
is linear (179.1°). An angle of 138.6° was detected
for the aluminum-imino group AI-N=C. The C-N dis-
tances differ in accordance with the different bond or-
ders and show values of 125.3 (C=N) and 114.0 pm
(C=N), both being slightly shorter than the standard
values [17]. In this case, too, the phenyl group is al-
most ideally in plane with the C=N double bond (angle

between the normals of the planes of the Al-N=C and
the phenyl groups 5.2°), which may indicate some 7-
interaction between both 7-systems.

Reaction of di(tert-butyl)aluminum hydride with tert-
butylisonitrile

The reaction between di(tert-butyl)aluminum hy-
dride and tert-butylisonitrile succeeded at room tem-
perature over a period of a few hours, and the colorless
product 8 was isolated after recrystallization from n-
hexane in 87% yield (eqg. (3)). The spectroscopic find-
ings are quite similar to those described before, but the
resonance of the N=C-H protons in the 1H NMR spec-
trum is shifted to a lower field (6 = 9.76) compared
to those of the R-C=N products 3 and 4. Compound 8
decomposes at 240 °C by gas evolution.

Compound 8, (Me3C),Al-C(H)=N-CMejs, is formed
by the insertion of the isonitrile carbon atom into the
Al-H bond of the hydride. Dimers result from the in-
termolecular interaction between the 3-nitrogen atoms
and the coordinatively unsaturated aluminum atoms
(Fig. 3). The six-membered Al,N,C, heterocycle in
the molecular core of 8 is almost ideally planar with a

MesC, H
Me;3C N=—C CMe;
/ /
2(Me3C)2AIH + 2 CEN-CMez —> \AI \AI
e ZANEIVANNINC
1 Me3C /C:N CMe;
H CMe3

Fig. 3. Molecular structure of compound 8. The ellipsoids
are drawn at the 40% probability level; hydrogen atoms
are omitted. Selected bond lengths [pm] and angles [°]:
Al-N 197.8(2), AI-C1’ 203.8(2), N-C1 128.5(2), Al-N-C1
116.7(1), N-Al-C1’ 103.69(7), N-C1-Al1’ 139.6(2), Al-N-
C11 125.5(1), C1-N-C11 117.8(2); C1’ and Al1’ generated
by —x, -y, —z+1.
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maximum deviation of an atom from the average plane
of 1.3 pm only. The Al-N distances (197.8 pm) corre-
late well with a donor interaction between the imino
nitrogen and the aluminum atoms. The Al-C distances
to the terminal tert-butyl groups and to the endocyclic
carbon atoms are in a narrow range at about 203 pm
and reflect standard values of Al-C single bonds in-
volving tetracoordinated aluminum atoms. The C=N
bond length is 128.5 pm, which is only slightly length-
ened compared to compounds 3 and 4 and corresponds
well to the standard value of C=N double bonds [17].
As expected, the nitrogen atoms attached to two car-
bon atoms (tert-butyl group and N=C double bond) and
an aluminum atom have an ideally planar surrounding
(sum of angles = 360°).

Reaction of di(tert-butyl)aluminumhydride with trime-
thylsilylcyanide

The reaction of trimethylsilylcyanide with di(tert-
butyl)aluminum hydride (eq. (4)) did not yield a prod-
uct of hydroalumination, which immediately became
obvious from the missing of a resonance of N=C-
H protons (8 > 8) in the *H NMR spectrum of the
crude product. The IR spectrum showed an absorp-
tion at 2211 cm~1 in the characteristic range of C=N
triple bonds. The formation of di(tert-butyl)aluminum
cyanide 9 was confirmed by crystal structure determi-
nation, which verifies a tetrameric formula unit with
four cyano ligands bridging four aluminum atoms in
the solid state. Compound 9 is only sparingly soluble
in non-coordinating solvents. Thus, we were not able
to determine the molar mass in solution or to detect
the 3C NMR resonances of the cyanido groups. 9 was
also obtained in a high yield by the reaction of di(tert-
butyl)aluminum bromide with trimethylsilyl cyanide
(eqg. (4)) under release of trimethylsilyl bromide. The
synthesis of 9 starting with a dialkylaluminum hy-
dride may open the facile access to similar hetero-
cyclic compounds. In a preliminary further experiment
we treated Me3Si-N3 with di(tert-butyl)aluminum hy-
dride and obtained the corresponding dialkylaluminum
azide. Further experiments are in progress [18].

The molecular structure of 9 (Fig. 4) comprises
a tetrameric formula unit of the dialkylaluminum
cyanide (Me3C),AI-CN. The structure may be de-
scribed by a square of aluminum atoms which are con-
nected by bridging cyano ligands to yield a twelve-
membered, planar Al;C4Ny4 heterocycle. The molecule
is located on a center of symmetry, and the nitro-

4(MesC)AIH + 4 N=C-SiMes
1

- 4 Me3SiH
Me3(i‘, (l:Me3
Me;;C—-/i\I——NE —TI—CMe
i I
| I ®
Me;C—TI—CE —/I-\I—CMeg,
ME3C CMe3
9
- 4 Me3SiBr

4(Me3C)AIBr + 4N=C-SiMej

gen and carbon atoms of the cyanide groups are sta-
tistically disordered as often observed before. Thus,
each atomic position of the CN couples was refined
by an occupation with half a carbon and half a ni-
trogen atom. The CN groups have an almost ideally
linear surrounding with bond angles AI-N-C and Al-
C-N of 177.3° on average. The C=N bond lengths
(115.1 pm on average) correspond well to the stan-
dard value [17]. The AI-C/N distances in the ring are
in the expected range at 199.4 pm. Dialkylaluminum
or -gallium cyanides have been known since many
decades [19], often they were characterized by IR spec-
troscopy and elemental analyses only. Crystal struc-
ture determinations are rare. Two compounds bear-
ing the bulky bis(trimethylsilyl)methyl substituents at-
tached to their central aluminum or gallium atoms,
(R2E-C=N);3 [E = Al, Ga; R = CH(SiMe3),], were
described by our group [20,21]. In contrast to the
tetrameric di(tert-butyl)aluminum compound 9, these
compounds adopt a trimeric structure in the solid state,
which may be caused by the particular packing of the
very bulky substituents and was observed for an azido
derivative also [22]. In solution the aluminum com-
pound seems to be dimeric, while owing to spectro-
scopic findings the gallium compound was reported to
be a tetramer similar to the structure of 9 in the solid
state. 13C NMR data revealed an unsymmetrical struc-
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Fig. 4. Molecular structure of compound 9. The ellipsoids are
drawn at the 40% probability level; methyl groups are omit-
ted. Selected bond lengths [pm] and angles [°]: Al1-C1/N2
199.2(2), Al1-N3°/C4’ 199.6(2), Al2-N1/C2 199.5(2), Al2-
C3/N4 199.4(2), C1/N2-N1/C2 115.2(2), C3/N4-N3/C4
114.9(2), Al1-C1/N2-N1/C2 177.6(1), C1/N2-N1/C2-Al2
176.1(1), AI2-C3/N4-N3/C4 177.5(1), C3/N4-N3/C4-All’
178.0(1), C1/N2-Al1-N3’/C4’ 95.66(6), N1/C2-Al2-C3/N4
94.92(6); N3’, C4” and Al1’ generated by —x+1, —y+1,
—-z+1

ture in that case [21] with one gallium atom attached
to two carbon atoms and another one to two nitrogen
atoms. The remaining two gallium atoms are coordi-
nated by a carbon and a nitrogen atom each. Such an
unsymmetrical structure was also derived from the IR
spectra of tetrameric dialkylgallium cyanides bearing
smaller substituents [21]. As mentioned before, the low
solubility of 9 prevented the detection of 13C NMR res-
onances of the CN groups and, hence, the clear assign-
ment of the molecular symmetry and the orientation of
the bridging CN ligands. A cyano group bridging two
gallium atoms was further found in the anion [Me 3Ga-
C=N-GaMes]~ with Cs* as a counterion [23].

Experimental Section

All procedures were carried out under purified ar-
gon in dried solvents (n-pentane and n-hexane over
LiAIH4). Commercially available (Aldrich) benzonitrile,
tert-butylisonitrile and trimethylsilyl cyanide were em-
ployed without further purification. The oligomeric start-
ing compounds Et,AlH [24], (Me3C),AlH [15,25], and
(Me3C),AlBr [26] were obtained according to literature pro-
cedures.

[(Me3C)2AI-N=C(CsHs)H]2 (3)

A solution of (Me3C),AIH 1 (0.69 g, 4.84 mmol) in 20 ml
of n-pentane was added to a solution of benzonitrile (0.50 g,
4.84 mmol) in 20 ml of the same solvent at room temper-

ature. The color of the mixture changed to yellow. The so-
lution was stirred for 3 h, concentrated to one third of its
original volume and cooled to —15 °C. Yield: 1.01 g (85%
based on 1); yellow crystals. M.p. (under argon, sealed cap-
illary) 220 °C. — IR (cm~1; paraffin; CsBr plates): 1695 w,
1620 vs, 1599 s, 1579 s v C=N, v CC; 1463 vs paraffin;
1411 w 6 CH; 1379 s paraffin; 1309 m 6 CH; 1206 m,
1175 w, 1080 w, 1002 m, 931 w v CN, v CC; 847 m, 810 m,
747 m 706 s 6 CC; 618 vw, 584 m, 553 vs, 506 w, 482 m,
450 m, 404 w, 358 m v AIC, v AIN, phenyl. - 1H NMR
(400 MHz, CgDg): 6 1.28 (18 H, s, CMe3), 7.07 (3 H,
br., meta- and para-H of phenyl), 7.51 (2 H, pseudo-d, or-
tho-H of phenyl), 9.13 (1 H, s, N=C-H). — 13C{*H} NMR
(100.6 MHz, CgDg): 6 = 17.4 (AIC), 32.8 (CHs), 129.1,
129.3, 133.3, and 136.4 (phenyl), 177.0 (C=N).

[(H5C2)2Al-N=C(CsHs)H] 2 (4)

A solution of (H5C5),AlIH 2 (0.42 g, 4.84 mmol) in 20 mi
of n-pentane was added to a solution of benzonitrile (0.50 g,
4.84 mmol) in 20 ml of the same solvent at room temper-
ature. The color of the mixture changed to yellow. The so-
lution was stirred for 3 h. The solvent was removed in vac-
uum, and the residue was thoroughly evacuated to 10~3 Torr
for 14 h. A solid remained, which was recrystallized several
times from n-pentane (20/—50 °C). Yield: 0.41 g (45% based
on 2); yellowish crystals. M.p. (under argon, sealed capil-
lary) 65 °C. — IR (cm~1; paraffin; CsBr plates): 1688 m,
1635 vs, 1601 s, 1581 s v C=N, v CC; 1460 vs paraffin;
1407 m & CH; 1376 s paraffin; 1327 w, 1308 m, 1289 w
60 CH; 1205 s, 1177 m, 1101 w, 1071 m, 1026 w, 985 s,
949 m, 915 m v CN, v CC; 843 s, 748 s, 715 vs, 688 s,
631 br.,vs 6 CC; 562 s, 477 m, 411 w v AIC, v AIN,
phenyl. —1H NMR (400 MHz, CgDg, 360 K): 8 = 0.37 (4 H,
0, 3J4n = 8 Hz, CH, of ethyl), 1.25 (6 H, br., s, CHz of
ethyl), 7.20 (3 H, m, meta- and para-H of phenyl), 7.52 (2 H,
m, ortho-H of phenyl), 8.90 (1 H, s, N=C-H). - I1H NMR
(400 MHz, CgDg, 300 K): two isomers in the ratio 1 to 0.44;
trans-form: 6 = 0.46 (for both isomers, pseudo-q, Al-CHjy),
1.32 (6 H, t, 3Jun = 8 Hz, CH3 of ethyl), 7.07 (for both iso-
mers, m, meta- and para-H of phenyl), 7.48 (for both iso-
mers, m, ortho-H of phenyl), 8.84 (1 H, s, N=C-H); cis-form
(in addition to those resonances observed for both isomers):
1.23 and 1.42 (each 3 H, t, 3JHH = 8 Hz, CHj of ethyl),
8.82 (1 H, s, N=C-H). - 13C{1H} NMR (100.6 MHz, C¢Ds,
300 K): 6 = 0.40 (br., AIC), 9.9 (CH3) [9.8 and 10.0 of the
cis-isomer], 129.03, 129.1, 132.63, 137.3 (phenyl) [128.96,
129.4, 132.60, and 137.2 of the cis-isomer], 174.9 (C=N)
[175.3 of the cis-isomer].

[(Me3S)2HC]2AI-H (6)

A mixture of AI[CH(SiMej3),]3 [26] (8.47 g, 16.8 mmol)
and AlH3 - NMeyEt (1.04 g, 10.1 mmol, excess) without
a solvent was slowly (2 to 3 h) heated from room tem-
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Table 1. Crystal data, data collection, and structure refinement.

3 4 5 7 8 9
Crystal data
Empirical formula CsoHagAlo Ny CooH3zoAln N2 Co7H3gAlLClgNy  CogHagAIN,Sis CosHssAlN> C3gH72AI4Ng
My 490.66 378.46 657.25 553.03 450.69 668.90
Crystal system monoclinic triclinic monoclinic monoclinic monoclinic triclinic
Space group C2/c; no. 15 [29] P1; no. 2 [29] P2;/c; no. 14 [29] P2;/c; no. 14 [29] P2;/n; no. 14 [29] P1; no. 2 [29]
a[pm] 1985.9(2) 740.4(1) 993.1(2) 1393.2(3) 860.1(1) 893.49(7)
b [pm] 976.7(1) 818.1(1) 1538.1(3) 1449.2(3) 1163.6(1) 1198.72(9)
c[pm] 1623.5(2) 1041.5(2) 1219.0(2) 1781.5(4) 1475.8(2) 1269.52(9)
o[°] 90 105.01(2) 90 90 90 69.253(6)
B[] 109.232(8) 109.27(2) 111.05(3) 98.66(3) 90.61(1) 71.743(6)
v[°] 90 96.18(2) 90 90 90 85.403(6)
V [A%] 2973.2(6) 562.1(2) 1737.8(6) 3555.9(13) 1476.9(3) 1206.8(2)
Peale [g cm—3] 1.096 1.118 1.256 1.033 1.013 0.920
z 4 1 2 4 2 1
F(000) 1072 204 684 1200 504 368
u(Mo-Ky) [em~1] 117 1.37 5.64 2.09 1.13 1.20
Data collection
T [K] 193(2) 193(2) 193(2) 193(2) 193(2) 193(2)
Measured reflections 10620 5336 20669 28645 10468 17589
Unique reflections 2804 2031 3483 6870 2964 4814

[R(int) = 0.0414] [R(int) = 0.0401] [R(int) =0.0426] [R(int) =0.0588] [R(int) =0.0325] [R(int) = 0.0465]
Reflections | > 20(1) 2469 1532 2717 4303 2391 3986
Refinement
Refined parameters 160 120 187 328 145 211
Final R values
RL[l > 25(1))@ 0.0335 0.0619 0.0426 0.0409 0.0550 0.0411
wR2"/ (all data) _ 0.0981 0.1877 0.1278 0.1005 0.1616 0.1249
piin(Max/min) [eA—3] 0.236/—0.173 0.650/—0.348 0.347/-0.236 0.159/—-0.213 0.733/—-0.379 0.206/—0.255

W R=2(||Fo| — [Fell)/Z|Fo; P wRe = {[Zw(F§ — F2)?]/Z[w(FS )},

perature to 170 °C and further stirred at this tempera-
ture for 2 h. Elemental aluminum precipitated. The mix-
ture was cooled to room temperature, and all volatile com-
ponents were removed in vacuum. The residue was recrys-
tallized from n-hexane (20/—50 °C). Yield: 4.96 g (57%,
based on AIR3), colorless crystals. Characterization: see
reference [15].

[(Me3S)2HC]2Al-N=C(CgH5)H-N=C-Cg Hs (7)

A solution of benzonitrile (0.294 g, 2.85 mmol) in 20 ml
of n-hexane was added to a cooled solution (—10 °C) of
[(Me3Si),HC],Al-H 6 (0.495 g, 1.43 mmol) in 20 ml of n-
hexane. The color of the mixture changed to yellow. After
1 h at —10 °C the solution was warmed to room tempera-
ture and stirred for further 3 h. The solvent was removed
in vacuum, and the residue was evacuated (102 Torr) for
14 h. The remaining solid was recrystallized from n-hexane
(20/—50 °C). Yield: 0.72 g (91%). M.p. (under argon, sealed
capillary) 75 °C. — IR (cm~1; paraffin; CsBr plates): 2269 s
v C=N; 1685 s, 1627 m, 1596 m, 1582 m, 1488 m v C=N,
v CC; 1453 vs, 1377 s paraffin; 1299 w, 1287 w, 1245 vs
6 CH; 1200 m, 1178 w, 1166 w, 1154 w, 1066 w v CN, v CC;
1009 vs & CH(Siy); 912 s, 850 vs, 780 vs, 755 vs p CH3(Si);

672 s vas SiC; 637 w, 628 w, 610 w v SiC, § CC; 583 w,
554 m, 512 s, 475 w, 413 m, 320 m v AIC, v AIN, phenyl.
- 1H NMR (300 MHz, CgDg): 6 = —0.79 (2 H, s, CHSiy),
0.30 (36 H, s, SiMe3), 6.52, 6.73, 7.04, 7.17, 7.86 (each m,
phenyl), 9.73 (1 H, s, N=C-H). - 13C{1H} NMR (75.5 MHz,
CgDg, 300 K): § = 0.82 (AIC), 4.6 (CH3), 106.9 (C=N),
120.6, 130.1, 132.8, 135.6, and 141.3 (phenyl), 160.7 (C=N).

[(Me3C)2AI-C(H)=N(CMes)] > (8)

A solution of (Me3C),AIH 1 (0.344 g, 2.42 mmol) in
20 ml of n-hexane was treated with a solution of tert-
butylisonitrile (0.201 g, 2.42 mmol) in 20 ml of the same
solvent at room temperature. The solution was stirred for
4 h. The solvent was removed in vacuum, and the solid
residue was recrystallized from n-hexane (20/—50 °C). Yield:
0.474 g (87%); colorless crystals. Dec.p. (under argon, sealed
capillary) 240 °C (gas evolution). — IR (cm~1; paraffin; CsBr
plates): 1647 vw, 1553 m, 1539 m v C=N; 1462 vs, 1380 vs
paraffin; 1243 m, 1230 m § CH; 1184 s, 1032 w, 1001 m,
957 w, 932 s, 875 m, 809 vs v N, v C; 771 , 724 w,
663 s 6 CC; 574 s, 544 vs, 503 m, 467 s, 425 s, 404 s,
355 m v AIC, v AIN, phenyl. —1H NMR (400 MHz, C¢Ds):
6 = 1.08 (18 H, s, N-CMe3), 1.20 (36 H, s, Al-CMej3),
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9.76 (1 H, s, N=C-H). - 3C{1H} NMR (100.6 MHz, C¢Dg):
6 = 16.6 (AIC), 29.6 (methyl of N-CMe3), 32.8 (methyl of
Al-CMej3), 62.2 (N-C), 227.1 (C=N).

[(Me3C)2AI-C=N]4 (9)

a) Starting with (Me3C),AIH: A solution of trimethylsi-
lyl cyanide (0.331 g, 3.34 mmol) in 20 ml of n-hexane was
added dropwise to a solution of (Me3C),AIH 1 (0.475 g,
3.35 mmol) in 20 ml of the same solvent at room temperature.
The yellow solution was stirred for 4 h. All volatiles were re-
moved in vacuum, and the solid residue was recrystallized
from n-hexane (20/—15 °C). Yield: 0.475 g (85%). b) Start-
ing with (Me3C),AlIBr: (Me3C),AlBr (0.559 g, 2.53 mmol)
and trimethylsilyl cyanide (0.299 g, 3.02 mmol) were mixed
at room temperature without a solvent. Slow gas evolution
occurred. The mixture was stirred for 4 h, and all volatiles
were removed in vacuum. The residue was recrystallized
from n-hexane (20/—15 °C). Yield: 0.381 g (90%, based
on R,AIBr); colorless crystals, only sparingly soluble in
non-coordinating solvents. M.p. (under argon, sealed capil-
lary) 170 °C. — IR (cm~1; paraffin; CsBr plates): 2211 vs
v C=N; 1462 vs, 1377 s paraffin; 1362 s 6§ CH; 1217 w,
1195 w; 1003 s vas C3C; 937 s p3; 815 vs vs C3C; 722 paraf-
fin; 613 vs, 558 vs, 513 vs, 432 w, 396 s v AIC, v AIN.
- 1H NMR (400 MHz, Dg-toluene): § = 1.09 (CMes). —
A clearly resolved 23C{'H} NMR spectrum could not be
recorded.

Crystal structure determination

Single crystals were obtained by cooling of saturated so-
lutions in different solvents (3: n-pentane, —15 °C; 4: n-
pentane, —50 °C; 5: Dg-toluene, +6 °C; 7: n-hexane, —50 °C;
8: n-hexane, —50 °C; 9: n-hexane, —15 °C). Data collections
were performed on a STOE IPDS diffractometer employ-
ing graphite-monochromated Mo-K,, radiation. The struc-
tures were solved by direct methods and refined by full ma-
trix least-squares calculations based on F2 [28]. The hydro-
gen atoms were calculated on ideal positions and refined
by the riding model. Crystal data, data collection parame-
ters, and details of the structure refinement are given in Ta-
ble 1. The crystallographic data of all compounds (exclud-
ing structure factors) were deposited with the Cambridge
Crystallographic Data Centre, CCDC-242635 (3), -242634
(4), -243078 (5), -242637 (7), -242636 (8), and -242638 (9).
Copies of the data can be obtained free of charge on appli-
cation to The Director, CCDC, 12 Union Road, Cambridge
CB21EZ, UK (Fax: int.code+(1223)336-033; e-mail for in-
quiry: fileserv@ccdc.cam.ac.uk). The molecules of 3, 4, 5, 8,
and 9 are located on centers of symmetry. Compound 5 crys-
tallizes with a disordered toluene-molecule; hydrogen atoms
of the solvent molecule were not considered.
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