# Reaction of $N^{1}, N^{2}$-Diarylamidines with 2,3-Diphenylcyclopropenone 

Mohsen Abdel-Motaal Gomaa<br>Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt<br>Reprint requests to Dr. M. A.-M. Gomaa. E-mail: mohsengomaa@link.net. Fax: +20-8634-2601<br>Z. Naturforsch. 59b, 597 - 600 (2004); received October 20, 2003<br>Reaction of $N^{1}, N^{2}$-diarylacetamidines 1a-c with 2,3-diphenylcyclopropenone 2 led to formation of addition products 2-methyl-1-aryl-2-arylamino-4,5-diphenyl-1,2-dihydro-3H-pyrrol-3-ones $\mathbf{3 a}$-c. While $N^{1}, N^{2}$-diarylformamidines $\mathbf{1 d}$ - $\mathbf{f}$ reacted with 2,3-diphenylcyclopropenone $\mathbf{2}$ to afford 3-aryl-( $N$-4-arylformamidoyl)amino-2,3-diphenyl propionic acids 7a-c.

Key words: Amidine, Pyrrole, Diphenylcyclopropenone, 3-Formamidoylpropionic Acid

## Introduction

The fascinating chemistry of cyclopropenones has attracted the attention of numerous researchers over the past three decades $[1,2]$ with special emphasis on the behaviour of diphenylcyclopropenone 2 [3]. Diphenylcyclopropenone has been found to react with a wide range of imines, 1,1-tetraalkylguanidines and other compounds containing the $\mathrm{C}=\mathrm{N}$ moiety to form almost aza-cyclo-pentenones (pyrrolinones) via a formal $[2+3]$ cycloaddition reaction [4-9]. In some cases, reaction of 2 with guanidine, 1-alkyland 1-phenylsubstituted guanidines, 1,2-diphenyl- and 1,2,3-triphenylguanidine gave the corresponding 5,6-dihydro-4(1H)pyrimidinone via a formal [3+3] cycloaddition reaction [8].
Recently we have synthesized some 2-(arylaminopyridinylidene)propanedinitriles from the reaction of $N^{1}, N^{2}$-diarylacet- and propionamidines with (2,3-diphenylcyclopropen-2-ylidene)propanedinitrile [10]. Also we have synthesized some of 2-cyclohexyland 2-arylaminomethylene- $\Delta^{4}$-pyrrolin-3-ones from the reaction of $N, N^{\prime}$-dicyclohexyl- and diarylethane-1,2-diylidenediamines with 2 [11].

As part of our programme to develop efficient procedures for the synthesis of heterocycles via the nucleophilic reactions of an amidine group ( $-\mathrm{HN}-\mathrm{CR}=\mathrm{N}-$ ) with $\pi$-deficient compounds we have synthesized several heterocyclic compounds like diazepines [12], azepines [13], 1,2-Dihydropyridines [14], indoles [15], benzoindoles [15], spiroindoles [13, 16, 17] and benzoisoquinolines [18].

In the literature survey we have found that the reaction of $N^{1}, N^{2}$-Diarylacetamidines and formamidines and 2,3-diphenylcyclopropenone $\mathbf{2}$ was not reported. So, this prompted us to investigate the behaviour of $N^{1}, N^{2}$-Diarylacetamidines and formamidines $\mathbf{1 a}-\mathbf{f}$ towards 2,3-diphenylcyclopropenone $\mathbf{2}$.

## Results and Discussion

First we investigated the reaction of $N^{1}, N^{2}$-Diarylacetamidines $\mathbf{1 a - c}$ and 2,3-diphenylcyclopropenone 2 in diethyl ether which led to formation of $\Delta^{4}$ -pyrrolin-3-ones 3a-c (Scheme 1). The structure of compounds 3a-c was deduced from their elemental analyses and their IR and ${ }^{1} \mathrm{H}$ NMR spectra. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$ exhibited three singlets identified as methyl groups ( $\delta=1.56,2.26$ and 2.34), and the amino proton as a singlet $(\delta=10.15)$ along with multiplets ( $\delta=7.11-7.52$ ) for the aromatic protons. Also ${ }^{13} \mathrm{C}-135 / 90$-DEPT spectra of $\mathbf{3 a}$ showed the presence of the quaternary carbon atom $\mathrm{C}-2(\delta=53.42)$. Its IR spectrum showed two absorptions at $v=3295 \mathrm{~cm}^{-1}$ for the amino group (NH) and at $v=1676 \mathrm{~cm}^{-1}$ for the carbonyl group ( $\mathrm{C}=\mathrm{O}$ ). Thus the presence of the acetamidinic methyl group and the difference observed in the number of signals excludes structure 4 and supports structure 3. For more details see the Experimental Section.
Formation of 3a-c may be rationalized as a formal $[2+3]$ cycloaddition reaction similar to the rationalization given by Eicher [6] for the reaction of $\mathbf{2}$ with imines as depicted in Scheme 2 through an initial at-

a: $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} ; \mathrm{b}: \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} ; \mathbf{c}: \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
Scheme 1.


Scheme 2.
tack of the imino nitrogen atom $\mathrm{C}=\mathrm{N}$ of the amidine on carbon atoms C-2 or C-3 of the cyclopropenone 2 giving immonim betaines $\mathbf{5 a - c}$ which rearrange to the aziridineketenes $\mathbf{6 a - c}$ to give ultimately $\mathbf{3 a - c}$.

Next, the reaction of $N^{1}, N^{2}$-diarylformamidines 1d-f with 2,3-diphenylcyclopropenone 2 gave unexpectedly 3 -formamidoyl propionic acid derivatives $7 \mathbf{a - c}$ in $67-80 \%$ yield. Elucidation of structure 7a-c was assigned on the basis of analytical and spectroscopic data. The IR spectra of 7a-c showed absorptions at $3280-3295 \mathrm{~cm}^{-1}$ and $1678-1680 \mathrm{~cm}^{-1}$ indicating the presence of a COOH group. The ${ }^{1} \mathrm{H}$ NMR spectra showed the presence of two AB -systems at $\delta_{\mathrm{A}}=4.55-6.26$ and $\delta_{\mathrm{B}}=6.04-6.42 \mathrm{ppm}$ with coupling constants ${ }^{3} J=10.8-12.0 \mathrm{~Hz}$ which indicate the presence of a vicinal coupling between $2-\mathrm{H}$ and 3 -H protons and singlet at $7.92-8.05 \mathrm{ppm}$ was assigned to the formyl proton $(\mathrm{CH}=\mathrm{N})$ of the formamidoyl group, and a singlet at $10.13-10.48 \mathrm{ppm}$ to the carboxylic proton. Moreover ${ }^{13} \mathrm{C}$-135/90-DEPT spectra of 7a for example showed two characteristic signals with a positive amplitude at higher field at $\delta=52.73$ and 62.82 ppm , which were assigned to $\mathrm{C}-2$ and C-3, respectively; another signal with a positive amplitude


Scheme 3.


Scheme 4.
at $\delta=163.02 \mathrm{ppm}$ was assigned to the formamidinyl carbon atom. Compounds $7 \mathbf{7 a}$-c were isolated as a mixture of diastereomers, for more details see the Experimental Section.

Formation of 7a-c may be rationalized as an initial attack of the nitrogen atom of $\mathrm{CH}=\mathrm{N}$ of the amidine on the carbon atom C-2 or C-3 of the cyclopropenone $\mathbf{2}$ giving imminim betaines $\mathbf{8 a - c}$ which rearrange (similarly as in Scheme 2) to the aziridineketenes $9 \mathbf{a - c}$. The latter undergo hydration to give the formamidoyl-
propionic acid derivatives 7a-c (Scheme 4). Similar results were reported by Kascheres et. al. [19] for the reaction of pyrazoles with diphenylcyclopropenone. The source of water may be coming from the atmosphere or from the solvent.

## Conclusion

This study showed that $N^{1}, N^{2}$-Diarylacetamidines behave like imines and benzamidines with 2 through formal $[2+3]$ cycloaddition reaction giving the corresponding $\Delta^{4}$-pyrrolin-3-ones. In contrast $N^{1}, N^{2}$ diarylformamidines led to formation of formamidoyl propionic acid derivatives when reacted with 2.

## Experimental Section

General
The uncorrected melting points were determined on a Griffin \& George apparatus. Elemental analyses were carried out by Microanalytical Centre at Cairo University. The IR spectra (KBr) were recorded on a Shimadzu 470 spectrophotometer. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR, spectra were observed on a Bruker AM 400 spectrometer. The MS ( 70 eV , electron impact mode) were recorded on a Jeol JMS600 instrument. Preparative layer chromatography (plc) used air dried 1.0 mm thick layers of slurry applied silica gel Merck $\mathrm{PF}_{254}$ on 48 cm wide and 20 cm high glass plates and toluene-ethyl acetate $(2: 1)$ as developing solvent. Zones were detected by the colour or by quenching of indicator fluorescence upon exposure to 254 nm light and eluted with acetone. Reactions were monitored by TLC.

## Starting materials

$N^{1}, N^{2}$-Diarylacetamidines $\mathbf{1 a - c}$ [20] and $N^{1}, N^{2}$-diarylformamidines $\mathbf{1 d}-\mathbf{f}$ [21] were prepared as reported.

General procedure for preparation of $\Delta^{4}$-pyrrolin-3-ones 3a-c

A solution of $2(206 \mathrm{mg}, 1.0 \mathrm{mmol})$ in diethyl ether $(10 \mathrm{ml})$ was added to solutions of $\mathbf{1 a - c}(1.0 \mathrm{mmol})$ in diethyl ether $(20 \mathrm{ml})$. The mixtures were left at room temperature for $2-3 \mathrm{~h}$. The mixtures were concentrated and the residues were subjected to PLC using toluene/ethyl acetate (2:1) as the developing solvent to give one or two main zones. The faster moving one contained $\mathbf{3 a}, \mathbf{3 b}$ or $\mathbf{3 c}$ respectively, while the more slowly moving one contained the unreacted cyclopropenone 2. The zones were extracted, and recrystallized from ethanol and identified as follows:

2-Methyl-1-(4-methylphenyl)-2-[(4-methylphenyl)amino]-4,5-diphenyl-1,2-dihydro-3H-pyrrol-3-one (3a)

Yield 0.2 g ( $90 \%$ ). - M.p. $226-227^{\circ} \mathrm{C}$. $-\mathrm{IR}(\mathrm{KBr}):$ $v=3295(\mathrm{NH}), 1676(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .-^{1} \mathrm{H}$ NMR ( 400 MHz ,
$\mathrm{d}_{6}$ DMSO): $\delta=1.53$ (s, 3H, Me), 2.26 (s, 3H, Me), 2.34 (s, 3H, Me), $7.11-7.52(\mathrm{~m}, 18 \mathrm{H}, ~ A r-\mathrm{H}), 10.15(\mathrm{~s}, 1 \mathrm{H}$, NH). $-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{d}_{6}$ DMSO) $\delta=19.23$, 20.31, $20.53(3 \times \mathrm{Me}), 53.42(\mathrm{C}-2), 114.36,116.40,126.35$, $127.12,127.75,128.882,129.33,129.94,130,13,131.44$ (all Ar-CH), 110.65, 128.45, 131.10, 134.74, 137.13, 137.54, 143.40, 187.67. - MS (EI, 70 eV ): $m / z(\%)=444(22)\left[\mathrm{M}^{+}\right]$, 367 (11), 313 (49), 238 (28), 207 (48), 196 (91), 179 (100), 107 (28), 91 (28). - $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ (444.57): calcd. C 83.75, H 6.35, N 6.30; found C 83.63; H 6.30, N 6.22.

## 2-Methyl-1-(4-methoxyphenyl)-2-[(4-methoxyphenyl)amino 14,5-diphenyl-1,2-dihydro-3H-pyrrol-3-one (3b)

Yield $0.26 \mathrm{~g}(85 \%)$ ) - M.p. $203-206{ }^{\circ} \mathrm{C}$. - IR (KBr): $v=3300(\mathrm{NH}), 1685(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ): $\delta=1.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.78$ ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ), 3.84 ( s , $3 \mathrm{H}, \mathrm{OMe}), 6.82-7.54(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. MS (EI, 70 eV ): $m / z(\%)=476$ (100) $\left[\mathrm{M}^{+}\right], 445(45)\left[\mathrm{M}^{+}\right.$ -OMe], 399 (15), 345 (56), 270 (17), 207 (34), 123 (44), 91 (31). - $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ (476.57): calcd. C 78.13, H 5.92, N 5.88; found C 78.20, H 5.96, N 5.62.

2-Anilino-2-methyl-1,4,5-triphenyl-1,2-dihydro-3H-pyrrol-3-one (3c)

Yield $0.18 \mathrm{~g}(88 \%)$. M.p. $220-222{ }^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}):$ $v=3290(\mathrm{NH}), 1680(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ): $\delta=1.75$ (s, 3H, Me), $7.05-7.63$ (m, 20H, Ar-H), $8.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=416$ (11) $\left[\mathrm{M}^{+}\right], 342$ (9), 299 (10), 272 (14), 224 (38), 210 (3), 182 (100), 179 (69), 165 (50), 91 (79), 78 (18). $-\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (416.51): calcd. C 83.63, H 5.81, N 6.73 ; found C 83.55, H 5.72, N 6.70 .

## General procedure for preparation of 3-formamidoyl propionic acid 7a-c

A solution of $2(206 \mathrm{mg}, 1.0 \mathrm{mmol})$ in diethyl ether ( 10 ml ) was added to solutions of $\mathbf{1 d}-\mathbf{f}(1.0 \mathrm{mmol})$ in diethyl ether ( 20 ml ). The mixtures were left at room temperature for $2-4 \mathrm{~h}$. The mixtures were concentrated and the residues were subjected to PLC using toluene/ethyl acetate (2:1) as the developing solvent to give one or two main zones. The faster moving one contained 7a, $\mathbf{7 b}$ or $\mathbf{7 c}$ respectively. The zones were extracted, and recrystallized from the proper solvent and identified as follows:

3-\{(4-Methylphenyl)-[N-4-(methylphenyl)-formamidoyl]-amino\}-2,3-diphenylpropionic acid (7a) as a mixture (3:1) diastereomers $(A=$ major, $B=$ minor $)$

Yield $0.33 \mathrm{~g}(74 \%)$. - M.p. $220-222^{\circ} \mathrm{C}$. $-\operatorname{IR}(\mathrm{KBr}): v=$ $3295(\mathrm{COOH}) 1676(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.14(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{B}), 2.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{A}), 2.20$
(s, 3H, Me, B), $2.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{A}), 4.56\left(\mathrm{~d},{ }^{3} J=12.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 2-\mathrm{H}, \mathrm{B}), 6.04\left(\mathrm{~d},{ }^{3} J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}, \mathrm{B}\right), 6.13$ (d, $\left.{ }^{3} J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}, \mathrm{A}\right), 6.26\left(\mathrm{~d},{ }^{3} J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\right.$ $\mathrm{H}, \mathrm{A}), 6.95-7.73(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{A}$ and B), $7.95(\mathrm{~s}, 1 \mathrm{H}$, formamidoyl- $\mathrm{H}, \mathrm{A}$ and B$), 10.16\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{B}\right), 10.20$ (s, $\left.1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{A}\right) .-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{d}_{6-}$ DMSO) $\delta=20.45$ and $20.55(2 \times \mathrm{Me}, \mathrm{A}), 20.46$ and $20.65(2 \times \mathrm{Me}$, B), 52.73 (C-2, A), 53.25 (C-2, B), 62.82 (C-3, A, B), $119.02,127.67,127.82,128.05,128.31,128.38,128.42$, $128.53,128.71,128.80,129.05,129.13,129.55$ (all aryl CH), 163.02 (formamidinyl $\mathrm{CH}, \mathrm{A}$ ), 163.75 (formamidinyl CH , B), $127.27,128.22,129.07,132.44,132.48,133.95,136.33$, $136.46,137.13,137.29,138.47,139.23,168.87\left(\mathrm{CO}_{2} \mathrm{H}, \mathrm{B}\right)$, $169.04\left(\mathrm{CO}_{2} \mathrm{H}, \mathrm{A}\right)$ (all quart. $C$ ). - MS (EI, 70 eV ): $\mathrm{m} / \mathrm{z}$ $(\%)=448(4)\left[\mathrm{M}^{+}\right], 342(4), 313$ (17), 224 (100), 196 (70), 179 (31), 107 (15), 91 (31), 44 (5). $-\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ (448.56): calcd. C 80.33, H 6.29, N 6.25; found C 80.15, H 6.18, N 6.20.

3-\{(4-Methoxyphenyl)-[N-4-methoxyphenyl)-formamidoyl]amino $\}$-2,3-diphenyl propionic acid (7b) as a mixture (2:1) diastereomers ( $A=$ major, $B=$ minor )

Yield $0.37 \mathrm{~g}(80 \%)$. M.p. $280-283{ }^{\circ} \mathrm{C}$. - IR KBr): $v=$ $3290(\mathrm{COOH}), 1680(\mathrm{C}=\mathrm{O}) ; \mathrm{cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{d}_{6-}$ DMSO): $\delta=3.65$ (s, $3 \mathrm{H}, \mathrm{OMe}, \mathrm{A}$ and B), 3.72 (s, 3 H ,

OMe, A and B), $4.56\left(\mathrm{~d},{ }^{3} J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}, \mathrm{B}\right), 6.05$ $\left(\mathrm{d},{ }^{3} J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}, \mathrm{B}\right), 6.18\left(\mathrm{~d},{ }^{3} J=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $2-\mathrm{H}, \mathrm{A}), 6.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}, \mathrm{A}\right), 6.74-7.58(\mathrm{~m}$, $18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{A}$ and B), 7.92 (s, 1H, formamidoyl-H, A and B), $10.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{B}\right) 10.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{A}\right) .-\mathrm{MS}$ (EI, 70 eV$): m / z(\%)=480(14)\left[\mathrm{M}^{+}\right], 462(1)\left[\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right]$, 246 (37), 244 (100), 179 (33), 123 (6), 91 (10), 55 (28). $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ (480.55): calcd. C 74.98, H 5.78, N 5.83; found C 74.91, H 5.75, N 5.77.

3-\{(4-Chlorophenyl)-[N-4-chlorophenyl)-formamidoyl]ami-no\}-2,3-diphenyl propionic acid (7c) as a mixture (2:1) diastereomers ( $A=$ major, $B=$ minor )

Yield $0.32 \mathrm{~g}(67 \%)$. - M.p. $235-237^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v=$ $3280(\mathrm{COOH}), 1679(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{d}_{6}$ DMSO): $\delta=4.55$ (d, $\left.{ }^{3} J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}, \mathrm{B}\right), 6.15$ $\left(\mathrm{d},{ }^{3} J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}, \mathrm{B}\right), 6.26\left(\mathrm{~d},{ }^{3} J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $2-\mathrm{H}, \mathrm{A}), 6.42\left(\mathrm{~d},{ }^{3} J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}, \mathrm{A}\right), 7.24-7.73(\mathrm{~m}$, $18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{A}$ and B), 8.05 ( $\mathrm{s}, 1 \mathrm{H}$, formamidoyl-H, A and B), 10.41 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{B}$ ), $10.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{A}\right) .-\mathrm{MS}(\mathrm{EI}$, $70 \mathrm{eV}): m / z(\%)=488(2)\left[\mathrm{M}^{+}\right], 368(2), 334(4), 244$ (100), 216 (80), 179 (44), 137 (57), 127 (15), 111 (35), 91 (11), 77 (15). - $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ (489.39): calcd. C 68.72, H 4.53, N 5.72; found C 68.58 , H 4.43, N 5.66.
[1] T. Eicher, J. L. Weber, Top. Curr. Chem. 57, 1 (1975).
[2] M. L. Deem, Synthesis 701 (1982).
[3] B. Musicki, J. Org. Chem. 56, 110 (1991).
[4] T. Eicher, J.L. Weber, Tetrahedron Lett. 15, 1381 (1974).
[5] T. Eicher, F. Abdesken, G. Franke, J. L. Weber, Tetrahedron Lett. 16, 3915 (1975).
[6] T. Eicher, J. L. Weber, G. Chatila, Liebigs Ann. Chem. 1203 (1978).
[7] T. Eicher, D. Krause, Tetrahedron Lett. 20, 1213 (1979).
[8] T. Eicher, G. Franke, Liebigs Ann. Chem. 1337 (1981).
[9] M. Takahashi, T. Funaki, H. Honda, Y. Yokoyama, H. Takimoto, Heterocycles 19, 1921 (1982).
[10] M. A.-M. Gomaa, D. Döpp, Synthesis 1545 (2003).
[11] M. A.-M. Gomaa, J. Chem. Soc. Perkin Trans. 1, 341 (2002).
[12] M. A.-M. Gomaa, D. Döpp, Tetrahedron 59, 5887 (2003).
[13] D. Döpp, M. A.-M. Gomaa, G. Henkel, A. M. Nour ElDin, J. Chem. Soc. Perkin Trans. 2, 573 (1996).
[14] M. A.-M. Gomaa, J. Chem. Res. (S) 444 (1997); J. Chem. Res. (M) 2679 (1997).
[15] D. Döpp, M. A.-M. Gomaa, G. Henkel, A. M. Nour ElDin, J. Heterocylic Chem. 32, 603 (1995).
[16] M. A.-M. Gomaa, A. M. Nour El-Din, A. A. Mohamed, Bull. Chem. Soc. Jpn. 72, 471 (1999).
[17] M. A.-M. Gomaa, J. Chem. Res. (S) 387 (2001).
[18] M. A.-M. Gomaa, S. K. Mohamed, A. M. Nour El-Din, J. Chem. Res. (S) 284 (1997).
[19] A. Kascheres, J. C. Filho, S. Cunha, Tetrahedron 49, 381 (1993).
[20] E. C. Taylor, W. A. Erhart, J. Org. Chem. 28, 1108 (1963).
[21] R. M. Roberts, J. Org. Chem. 14, 277 (1949).

