Facile Synthesis of Novel *N*-Aryl-4,5,6,7-tetrahydro-benzosultams by Oxyfunctionalisation of Bicyclic Isothiazolium Salts*

Anja Siegemund^a, Christine Hartung^a, Alexander Eilfeld^a, Joachim Sieler^b, and Bärbel Schulze^a

^a Institut f
ür Organische Chemie, Universit
ät Leipzig, Johannisallee 29, D-04103 Leipzig
 ^b Institut f
ür Anorganische Chemie, Universit
ät Leipzig, Johannisallee 29, D-04103 Leipzig

Reprint requests to Prof. Dr. B. Schulze. E-mail: bschulze@organik.chemie.uni-leipzig.de

Z. Naturforsch. 59b, 478-485 (2004); received February 3, 2004

Dedicated to Professor Dr. W. Kantlehner on the occasion of his 60th birthday

3-Hydroxy- (17a - j) and 3-alkoxy-4,5,6,7-tetrahydro-benzosultams 18a - m were prepared in good yields by oxidation of the bicyclic isothiazolium salts 10 with magnesium monoperoxyphthalate (MMPP·6H₂O) in acetonitrile or corresponding alcohol. A HPLC-API-MS(MS) method was used to monitor the oxidation process of 10 with MMPP. 3-Oxo-4,5,6,7-tetrahydro-benzosultams 19a - c, h, j were also obtained.

Key words: Sultams, Oxidation, Magnesium Monoperoxyphthalate (MMPP)

Introduction

Sultams such as Oppolzer's camphersultam [1] and benzosultams 1 [2] which can be synthesized from saccharine 2, are an important class of chiral auxiliaries for π -facial discrimination in asymmetric reactions. Several *N*-substituted 1,2-benzisothiazol-3(2*H*)-ones and their 1,1-dioxides have been extensively studied as biologically active compounds [3].

The development of serine protease inhibiting 3-oxobenzosultams 3-6 have been recently described [4]. There are several new methods for the synthesis of 3-mono-, 3,3-di- and spiro-substituted benzosultams 7-9 [2,4,5]. *N*-Protected saccharine 2 (R=MPM) was treated with DIBALH to give 3-functionalized sultams **7a**, which were converted into sultams **7b** [5a]. Phenylcarbinolsulfonamides, which underwent TMSCI-NaI-MeCN reagent mediated cyclization, react to 3,3-disubstituted sultams **7c** and chiral spiro-2,3-dihydro-1,2-benzisothiazole 1,1-dioxides **8** in high yields [5b].

Finally, chiral *N*-fluorosultams 9 which are efficient reagents for electrophilic asymmetric fluorination of lithium enolates were developed [6]. 3-Aryl-

* Presented in part at the 6^{th} Conference on Iminium Salts (ImSaT-6), Stimpfach-Rechenberg (Germany), September 16-18, 2003.

7c: $R^1 = R^2 = Me$ or Me, Ph

substituted benzosultams also received attention as potent HIV-1 inhibitors [7].

In recent years, we have studied synthetic methods of oxyfunctionalization of mono- and bicyclic isothiazolium salts to a range of *O*-functionalized derivatives in 3-position and of the sulfur [8]. This pathway to a new class of chiral sultams of the typ **16** or **17** is very convenient and controlled by the oxidants.

In the course of our study on the oxidation of the salts **10** we have investigated the influence of the sub-

0932-0776 / 04 / 0400-0478 \$ 06.00 © 2004 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

stituents (\mathbb{R}^1) at the 2-aryl ring and the stereochemical aspects of the formation of sultims **13** [8a]. The 3-hydroperoxy sultams **16** are novel chemoselective electrophilic oxidants for sulfur, nitrogen and phosphorus heteroatoms in non-aqueous media [9]. A HPLC-API-MS(MS) method was presented for reaction monitoring of the oxidation of isothiazolium salts **10** with H_2O_2 in acetic acid [10]. Using this method, the position of the primary oxidizing attack on the C-3-atom of **10** was determined for the first time and the transient intermediate **11** was characterized as structurally explicit [10].

Here we report a new approach to 3-hydroxy- and 3alkoxy-substituted *N*-aryl-4,5,6,7-tetrahydro-benzosultams **17** and **18** in a one-step process by oxidation of salts **10** with magnesium monoperoxyphthalate hexahydrate (MMPP \cdot 6H₂O) in acetonitrile or alcohol.

Results and Discussion

The synthesis of isothiazolium salts **10** (Scheme 1) has been performed by a known procedure from β -thiocyanatovinyl aldehydes and suitably substituted anilines in the presence of perchloric acid in glacial acetic acid by intramolecular cyclocondensation [8a]. Salts **10a, i, j** were prepared for the first time.

The oxidation of the salts 10h - j with excess 30% H_2O_2 in glacial acetic acid at room temperature (1 h) gives stable hydroperoxy sultims *rac-cis*-13h-j and hydroperoxy sultams 16h - j as crystalline products after 24 hours.

In the case of the oxidation of new salt **10a** with H_2O_2 in acetic acid at r.t. only a 3-hydroperoxy sultam **16a** could be obtained (70%). The 3-hydroperoxy sultams **16b**, **c** were stable compounds [8a], whereas the corresponding sultims **13b**, **c** of donor-substituted salts were never obtained. As expected, the oxidation of salts **10a**, **h**, **j** with 30% H_2O_2 in AcOH at 80 °C gave the 3-oxosultams **19a**, **h**, **j** in moderate yields (40–51%, method A). Compound **19i** was not isolated at all.

Furthermore, we investigated the oxidation of bicyclic salts 10a - j with MMPP $\cdot 6H_2O$ in the ultrasound bath at 60 °C (3 h), as described for monocyclic salts [11], and we obtained from unsubstituted and acceptor-substituted salts 10d - j 3-hydroxysultams 17d - j as colorless crystals in very high yield (68– 85%), see Table 1. Surprisingly, under the same reaction conditions the salts 10a - c with donor substituents in the 2-arylring yielded 3-oxosultams 19a, b (83,85%, method B) and a mixture of 17c/19c (1:4 (80%)).

Table 1. Synthesis of 3-hydroxysultams 17 with MMPP \cdot 6H₂O in CH₃CN (50 °C) and ultrasound.

Compound	\mathbb{R}^1	Yield (%)	M. p. (°C)
17a	2-OCH ₃	53 ^a	140
17b	4-OCH ₃	47 ^a	147
17c	4-CH ₃	59 ^a	158
17d	Н	84 ^b	145
17e	4-CO ₂ CH ₃	81	164
17f	2-Cl	76 ^b	133
17g	2,6-Cl ₂	85	163
17h	4-Cl	78	143
17i	2-NO ₂	68	155
17j	4-NO ₂	81	153
	1		

^a Without ultrasound bath at r. t.; ^b overall yields of **17d** (28%) and **17f** (36%) from salts **10d**, **f** over sultams **16d**, **f** with Na₂SO₃ [8a].

On the other hand, the oxidation of salts 10a - c with MMPP $\cdot 6H_2O$ gave without ultrasound at r.t. (3 h) 3-hydroxysultams 17a - c in 47 – 59% yield. This synthesis with MMPP to 3-hydroxybenzosultams 17a - j was very convenient in contrast to the oxidation-reduction pathway of the salts 10d, f via the hydroperoxides 16d, f and reduction with Na₂SO₃ (Scheme 1, Table 1) [8a].

By HPLC-MS(MS) reaction monitoring of the oxidation of salt **10e** with MMPP \cdot 6H₂O in CH₃CN the 3-hydroxysultims *rac-cis*-**14e** and *rac-trans*-**14e** could be detected as intermediates after 5 minutes in a 1:2 ratio (Scheme 1).

Interestingly, when the salts **10** with *p*-substituents in the 2-aryl ring reacted with MMPP \cdot 6H₂O in alcohols without ultrasound, the 3-alkoxysultams **18** were found in good yields (51–87%, Table 3) after 6 hours, whereas small amounts of **17** were always generated when an ultrasound bath was used. In the case of oxidation of *o*-substituted salts **10**, 3-alkoxysultams **18i**, **j**, **l** was obtained only in a moderate yield (29–35%).

Spectroscopic characteristics of sultams **17** and **18** are the infrared absorption of the sulfonyl function at 1275 - 1296 cm⁻¹ and 1149 - 1157 cm⁻¹. The ¹H NMR spectra of 3-hydroxysultams **17** are indicated by the 3-H proton absorption at $\delta = 5.85 - 6.22$ ppm and the ¹³C NMR chemical shifts of C-3 at $\delta = 82.0 - 86.0$ ppm, C-7a at 133.9 - 135.3 ppm and C-3a at 142.9 - 144.9 ppm. For the 3-alkoxysultams **18** the 3-H absorptions appear at 5.64 - 6.21 ppm and the C-3 signals at 85.3 - 91.9.

The structure of the 3-alkoxysultams **18** was proved by X-ray crystal structure analysis of **18k** ($R^1 = 4$ -Cl, $R^2 = C_2H_5$, Scheme 1). The isothiazole ring in **18k** is approximately planar. The sultam **18k** shows intermolecular hydrogen bonds between the atoms C(1)-

Scheme 1.

 $H(1)\cdots O(2)$ (3.24 Å) and forms 'head-to-tail' dimeric units about a center of symmetry.

A HPLC-MS(MS) online investigation of this oxidation process of the salt **10e** in CH₃OH has shown the formation of 3-methoxysultims *rac-cis*-**15e** and *ractrans*-**15e** after 5 minutes. The reactive *S*-oxide **12e** could also not be found in this experiment. The very fast formation of *rac-cis/trans-S*-oxides **15e** is mediated by a nucleophilic attack of the alcohol on C-3 of the reactive primary not isolable intermediate **12e**.

We have developed a useful one-step method for the synthesis of 3-hydroxy- and 3-alkoxy-functionalized

Table 2.	Analytical	data of 2-a	ryl-2,3,4,5,6	,7-hexahydro	-3-hydroxy-1	1,2-benzisothiazole	1,1-dioxides 17.
----------	------------	-------------	---------------	--------------	--------------	---------------------	------------------

Comp.	¹ H NMR ([D ₆]acetone), δ (ppm), J (Hz)	¹³ C NMR ([D ₆]acetone), δ (ppm)	EI-MS <i>m</i> / <i>z</i> (%)	Molecular formula – molecular weight	IR (cm ⁻¹)	EA calcd./found
17a	7.45-6.97 (m, 4 H), 5.65 (s, 1 H), 3.81 (s, 3 H), 2.48- 2.37 (m, 4 H), 1.82-1.75 (m, 4 H)	157.7, 143.4, 133.9, 132.2, 129.6, 122.4, 120.6, 112.7, 82.7, 55.5, 22.7, 21.3, 21.2, 18.3	295 (M ⁺ , 26), 277 (96)	C ₁₄ H ₁₇ NO ₄ S 295.36	1281 (SO ₂), 1153 (SO ₂)	C 56.93/56.88 H 5.80/5.94 N 4.74/4.71 S 10.86/11.03
17b	7.36/6.97 (2 d, $J = 10.2$, 4 H), 5.71 (s, 1 H), 3.80 (s, 3 H), 2.50–2.25 (m, 4 H), 1.90–1.76 (m, 4 H)	160.0, 144.9, 134.9, 129.1, 128.9, 115.9, 85.0, 56.4, 23.9, 22.6, 22.5, 19.5	295 (M ⁺ , 39), 277 (100)	C ₁₄ H ₁₇ NO ₄ S 295.36	1284 (SO ₂), 1153 (SO ₂)	C 56.93/56.90 H 5.80/6.03 N 4.74/4.82 10.86/10.95
17c	7.33/7.20 (2 d, <i>J</i> = 9.2, 4 H), 5.81 (s, 1 H), 2.47 – 2.20 (m, 4 H), 2.31 (s, 3 H), 1.96 – 1.77 (m, 4 H)	143.9, 133.5, 130.5, 129.9, 122.8, 82.6, 22.6, 21.1, 21.2, 20.2, 18.2	279 (M ⁺ , 12), 261 (68)	C ₁₄ H ₁₇ NO ₃ S 279.36	1277 (SO ₂), 1155 (SO ₂)	C 60.19/60.11 H 6.13/6.02 N 5.01/4.89 S 11.48/11.56
17e	8.03/7.54 (2 d, <i>J</i> = 8.6, 4 H), 6.05 (s, 1 H), 3.87 (s, 3 H), 2.54 - 2.37 (m, 4 H), 1.86 - 1.80 (m, 4 H)	167.4, 144.8, 142.2, 134.5, 132.1, 126.0, 118.6, 82.6, 52.8, 23.9, 22.5, 22.4, 19.3	323 (M ⁺ , 37), 306 (100)	C ₁₅ H ₁₇ NO ₅ S 323.37	1714 (CO), 1279 (SO ₂), 1149 (SO ₂)	C 55.71/55.83 H 5.30/5.22 N 4.33/4.28 S 9.92/10.04
17g	7.64–7.48 (m, 3 H), 5.85 (s, 1 H), 2.56–2.39 (m, 4 H), 1.92–1.82 (m, 4 H)	142.9, 139.9, 137.5, 134.1, 131.1, 129.5, 129.3, 84.6, 22.7, 21.1, 21.0, 18.3	333 (M ⁺ , 6), 161 (100)	C ₁₃ H ₁₃ Cl ₂ NO ₃ S 334.22	1278 (SO ₂), 1160 (SO ₂)	C 46.72/46.79 H 3.92/4.07 N 4.19/4.13 S 9.60/9.74
17h	7.63 7.49 (2 d, <i>J</i> = 9.0, 4 H), 5.91 (s, 1 H), 2.65 - 2.50 (m, 4 H), 1.92 - 1.82 (m, 4 H)	143.8, 137.0, 135.3, 130.0, 129.6, 122.7, 82.5, 22.9, 21.5, 21.4, 18.4	299 (M ⁺ , 25)	C ₁₃ H ₁₄ ClNO ₃ S 299.78	1294 (SO ₂), 1157 (SO ₂)	C 52.09/52.17 H 4.71/4.82 N 4.67/4.75 S 10.70/10.63
17i	8.05 - 8.04 (m, 1 H), 8.01 - 7.68 (m, 3 H), 5.91 (s, 1 H), 2.53 - 2.29 (m, 4 H), 1.90 - 1.76 (m, 4 H)	144.2, 136.8, 135.7, 134.6, 134.1, 131.3, 127.1, 125.9, 86.0, 23.6, 21.9, 21.8, 19.1	310 (M ⁺ , 34), 292 (57)	$\begin{array}{c} C_{13}H_{14}N_2O_5S\\ 310.33 \end{array}$	1537 (NO ₂), 1356 (NO ₂), 1292 (SO ₂), 1163 (SO ₂)	C 50.31/50.22 H 4.55/4.73 N 9.03/8.89 S 10.33/10.49
17j	8.35/7.66 (2 d, <i>J</i> = 9.3, 4 H), 6.22 (s, 1 H), 2.62 – 2.45 (m, 4 H), 1.93 – 1.84 (m, 4 H)	145.0, 143.9, 134.4, 132.4, 126.6, 118.2, 82.7, 24.0, 22.4, 22.3, 19.3	310 (M ⁺ , 26), 292 (48)	C ₁₃ H ₁₄ N ₂ O ₅ S 310.33	1510 (NO ₂), 1342 (NO ₂), 1290 (SO ₂), 1153 (SO ₂)	C 50.31/50.51 H 4.55/4.61 N 9.03/8.87 S 10.33/10.45

Table 3. Synthesis of 3-alkoxy sultams ${\bf 18}$ with $MMPP \cdot 6H_2O$ at r. t.

Compound	\mathbb{R}^1	\mathbb{R}^2	Yield (%)	M.p. (°C)
18a	2-OCH ₃	C ₂ H ₅	87	123
18b	2-OCH ₃	i-C ₃ H ₇	72	127
18c	4-OCH ₃	C_2H_5	78	117
18d	4-OCH ₃	i-C ₃ H ₇	78	95
18e	4-OCH ₃	$t-C_4H_9$	65	148
18f	4-CH ₃	CH ₃	71	114
18g	4-CH ₃	C_2H_5	86	104
18h	4-COOCH ₃	C_2H_5	51	110
18i	2-Cl	CH ₃	35	78
18j	2,6-Cl ₂	CH ₃	29	126
18k	4-Cl	C_2H_5	59	120
181	$2-NO_2$	C_2H_5	33	68
18m	4-NO ₂	C_2H_5	69	132

bicyclic sultams 17a-j	and 18a – m	by oxidation	of
isothiazolium salts 10a –	• i with MMP	$P \cdot 6H_2O$. It m	ost

Fig. 1. Molecular structure of 2-(4-chlorophenyl)-3-ethoxy-2,3,4,5,6,7-hexahydro-1,2-benzisothiazole 1,1-dioxide **18k** [16].

Experimental Section

General: Melting points: Boetius micro-melting-point apparatus; corrected. IR spectra: Genisis FTIR Unicam Analytical System (ATI Mattson); KBr pellets; values in cm⁻¹. UV/vis spectra: Beckman DU-650. ¹H NMR: Varian Gemini-200 and Varian Unity-400; δ in ppm rel. to TMS as internal standard, *J* in Hz. ¹³C NMR spectra: 50 or 100 MHz, recorded on the named spectrometers. MS: Quadrupole-MS VG 12-250; 70 eV. HPLC-MS: LC 1100 (Applied Biosystems), API 2000 (Perkin Elmer). Elemental analyses: Heraeus CHNO Rapid Analyzer.

2-Aryl-4,5,6,7-tetrahydro-1,2-benzisothiazolium perchlorates (10)

The salts **10b**, **d**, **h** were prepared according to [12]; **10c**, **e** according to [8a]; **10f**, **g** to [13]. The new salts **10a**, **i**, **j** were prepared according to [14]. **10a**: 76%. yellow crystals, m.p. $166-167 \, ^{\circ}$ C. **10i**: 56%. beige crystals, m. p. $198-200 \, ^{\circ}$ C. **10j**: 86%. yellow crystals, m. p. $114-116 \, ^{\circ}$ C.

2-Aryl-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-oxides (rac-cis-13)

General procedures: H_2O_2 (0.7 ml, 30%) was added to a stirred suspension of **10** (0.26 mmol) in AcOH (0.7 ml) at r.t. (1 h). After **10** was dissolved, a colorless precipitate of *rac-cis*-**13** was obtained which was immediately isolated; otherwise oxidation to **16** could have occurred. The isolation compounds *rac-cis*-**13** were washed with H₂O and recrystallized from *i*-PrOH. Compounds **13e**, **f**, **g** were described in [8a] and **13h** in [8b].

2-(2-Nitrophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-oxide (rac-cis-**13i**)

Yield: 59%, m. p. 112–114 °C. – IR (KBr): v = 1063 s (SO), 1356 s (NO₂), 1529 s (NO₂). – UV (ethanol): λ_{max} (lg ε) 206.0 (3.90). – ¹H NMR ([D₆]acetone): $\delta = 1.79$ (m, 4H, 2 CH₂), 2.41 (m, 4H, 2 CH₂), 5.76 (s, 1H, 3-H), 7.69 – 8.07 (m, 4H, arom. H), 11.00 (s, 1H, OOH). – ¹³C NMR ([D₆]acetone): $\delta = 21.3$, 21.4, 22.2, 23.7 (C-4, C-5, C-6, C-7), 102.1 (C-3), 125.6, 129.6 (2 arom. CH), 133.7 (arom. C), 134.1, 135.1 (2 arom. CH), 136.4 (C-7a), 140.3 (arom. C), 144.1 (C-3a). – EI-MS: m/z = 309 (M⁺). – C₁₃H₁₄N₂O₅S (311.62): calcd. C 50.11, H 4.53, N 8.99, S 10.29; found C 50.20, H 4.64, N 8.88, S 10.45.

Table 4. Crystal data and structure refinement for 18k.

Empirical formula	C ₁₅ H ₁₈ ClNO ₃ S
Formula weight	327.81
Temperature [K]	213(2)
Crystal system	tetragonal
Space group	P4(1)/a
a [Å]	12.9753(15)
b [Å]	12.9753(15)
c [Å]	37.715(4)
β[°]	90
Volume [Å ³]	6349.7(13)
Ζ	16
Density [Mg/m ³]	1.372
Absorption coeff. [mm ⁻¹]	0.381
Crystal size [mm]	0.30 imes 0.30 imes 0.20
θ Range for data collect. [°]	1.66 - 27.00
Index ranges	$-16 \ge h \ge 13$
	$-14 \ge k \ge 16$
	$-38 \ge l \ge 48$
Reflections collected	19884
Independent reflections	3479
	$[R_{\rm int} = 0.0388]$
Absorption correction	SADABS
Max. /min. transmission	0.9277 / 0.8943
Data / parameters	3479 / 266
Goodness-of-Fit on F^2	0.942
Final <i>R</i> indices $[I > 2(I)]$	$R_1 = 0.0360, wR_2 = 0.1034$
R Indices (all data)	$R_1 = 0.0523, wR_2 = 0.1092$
Lgst diff peak/hole [e Å ⁻³]	0.356/-0.276

2-(4-Nitrophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-oxide (rac-cis-**13j**)

Yield: 23%. In mixture with **16**j. – IR (KBr): v = 1054 s (SO). – UV (ethanol): λ_{max} (lg ε) 243.5 (4.25). – ¹H NMR ([D₆]acetone): $\delta = 1.82$ (m, 4H, 2 CH₂), 2.43 (m, 4H, 2 CH₂), 6.32 (s, 1H, 3-H), 7.49, 8.27 (4H, J_{AB} = 9.0 Hz, arom. H), 11.02 (s, 1H, OOH). – ¹³C NMR ([D₆]acetone): $\delta = 21.2$, 23.0, 23.9, 24.6 (C-4, C-5, C-6, C-7), 101.2 (C-3), 117.4, 128.4 (4 arom. CH), 135.7 (C-7a), 143.7 (arom. C), 144.2 (C-3a), 147.8 (arom. C). – EI-MS: m/z = 309 (M⁺). – C₁₃H₁₄N₂O₅S (311.62): calcd. C 50.11, H 4.53, N 8.99, S 10.29; found C 50.25, H 4.59, N 9.13, S 10.60.

2-Aryl-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-dioxides (16)

General procedure: H_2O_2 (0.7 ml, 30%) was added at r.t. to a stirred suspension of **10a**, h-j (0.26 mmol) in AcOH (0.7 ml). After 24 h, colorless crystals of **16a**, h-j were obtained, isolated, and recrystallized from EtOH. Compounds **16b**, c, e – g were described in [8a] and **16d** in [15].

2-(2-Methoxyphenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-dioxide (16a)

Yield: 70%, m.p. 147–150 °C. – IR (KBr): v = 1157 s (SO₂), 1295 s (SO₂). – ¹H NMR ([D₆]acetone): $\delta = 1.84$

(m, 4H, 2 CH₂), 2.43 (m, 4H, 2 CH₂), 3.87 (s, 3H, OCH₃), 6.03 (s, 1H, 3-H), 6.98–7.78 (m, 4H, arom. H), 10.88 (s, 1H, OOH). – ¹³C NMR ([D₆]acetone): δ = 18.4, 21.0, 21.1, 22.7 (C-4, C-5, C-6, C-7), 55.6 (OCH₃), 92.1 (C-3), 112.6, 120.8 (2 arom. CH), 122.3 (arom. C), 129.9, 132.2 (2 arom. CH), 136.1 (C-7a), 140.0 (C-3a), 157.3 (arom. C). – EI-MS: *m*/*z* = 293 (M–H₂O). – C₁₄H₁₇NO₅S (311.38): calcd. C 54.00, H 5.50, N 4.50, S 10.30; found C 54.13, H 5.54, N 4.64, S 10.17.

2-(4-Chlorophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-dioxide (**16h**)

Yield: 78%, m.p. 124–132 °C. – IR (KBr): v = 1160 s (SO₂), 1270 s (SO₂). – UV (ethanol): λ_{max} (lg ε) 236.0 (4.16). – ¹H NMR ([D₆]acetone): $\delta = 1.83$ (m, 4H, 2 CH₂), 2.49 (m, 4H, 2 CH₂), 5.80 (s, 1H, 3-H), 7.01, 7.22 (4H, $J_{AB} = 9.0$ Hz, arom. H), 10.85 (s, 1H, OOH). – ¹³C NMR ([D₆]acetone): $\delta = 19.0$, 21.4, 21.5, 23.4 (C-4, C-5, C-6, C-7), 92.1 (C-3), 123.3 (arom. C), 124.2, 130.3 (4 arom. CH), 133.7 (arom. C), 137.1 (C-7a), 140.1 (C-3a). – EI-MS: m/z = 315 (M⁺). – C₁₃H₁₄ClNO₄S (315.79): calcd. C 49.44, H 4.48, N 4.44, S 10.15; found C 49.01, H 4.23, N 4.47, S 10.17.

2-(2-Nitrophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-dioxide (16i)

Yield: 83%, m.p. 113–116 °C. – IR (KBr): v = 1157 s (SO₂), 1278 s (SO₂), 1358 s (NO₂), 1531 s (NO₂). – UV (ethanol): λ_{max} (lg ε) 208.0 (4.01). – ¹H NMR ([D₆]acetone): $\delta =$ 1.85 (m, 4H, 2 CH₂), 2.45 (m, 4H, 2 CH₂), 5.99 (s, 1H, 3-H), 7.78–8.12 (m, 4H, arom. H), 11.32 (s, 1H, OOH). – ¹³C NMR ([D₆]acetone): $\delta =$ 19.9, 22.4, 22.5, 24.4 (C-4, C-5, C-6, C-7), 95.5 (C-3), 127.2 (arom. CH), 128.0 (arom. C), 132.4 (arom. CH), 135.2, 135.4, (2 arom. CH), 137.7 (C-7a), 138.0 (arom. C), 141.5 (C-3a). – EI-MS: m/z = 327 (M⁺). – C₁₃H₁₄N₂O₆S (327.62): calcd. C 47.66, H 4.31, N 8.55, S 9.79; found C 47.51, H 4.42, N 9.61, S 9.91.

2-(4-Nitrophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-dioxide (16j)

Yield: 46%, m.p. 125–127 °C. – IR (KBr): v = 1153 s (SO₂), 1286 s (SO₂), 1342 s (NO₂), 1508 s (NO₂). – UV (ethanol): λ_{max} (lg ε) 203.5 (4.18). – ¹H NMR ([D₆]acetone): $\delta = 1.85$ (m, 4H, 2 CH₂), 2.45 (m, 4H, 2 CH₂), 6.48 (s, 1H, 3-H), 7.61, 8.32 (4H, $J_{AB} = 9.0$ Hz, arom. H), 10.90 (s, 1H, OOH). – EI-MS: m/z = 327 (M⁺). – C₁₃H₁₄N₂O₆S (327.62).

2-Aryl-2,3,4,5,6,7-hexahydro-3-hydroxy-1,2-benzisothiazole 1,1-dioxides (**17**)

General procedure: – Method A – MMPP \cdot 6H₂O (0.9 mmol) was added to a suspension of **10d** – **j** (0.3 mmol)

in acetonitrile and the mixture was left in the ultrasound bath for 3 hours at 50 °C. The excess MMPP was decomposed by addition of thiosulfate, the generated acid was neutralized with saturated aqueous NaHCO₃ and the mixture was extracted with Et₂O (3 x). The combined organic layers were dried over MgSO₄. The solvent was evaporated and the 3-hydroxysultams **17d-j** were purified by recrystallization from isopropyl alcohol. – Method B – MMPP · 6H₂O (0.9 mmol) was added to a suspension of **10a** – **c** (0.3 mmol) in acetonitrile and the mixture was stirred for 6 hours at r.t. The isolation and purification of **17a** – **c** were accomplished as described before (see Table 1, 2). Compounds **17d, f** were described in [8a].

3-Alkoxy-2-aryl-2,3,4,5,6,7-hexahydro-1,2-benzisothiazole 1,1-dioxides (18)

General procedure: MMPP \cdot 6H₂O (0.9 mmol) was added to a suspension of 10a - j (0.3 mmol) in alcohol and the mixture was stirred for 6 h at r.t. The excess MMPP was decomposed by addition of thiosulfate, the generated acid was neutralized with saturated aqueous NaHCO₃ and the mixture was extracted with Et₂O (3 x). The combined organic layers were dried over MgSO₄. The solvent was evaporated and the 3-alkoxysultams 18a - m were purified by recrystallization from EtOH-water (3:2) (see Table 3, 5).

2-Aryl-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1dioxides (19)

General procedure: – Method A – H₂O₂ (0.7 ml, 30%) was added to a suspension of **10a,h** – **j** (0.26 mmol) in AcOH (0.7 ml). The solution was stirred for 6 h at 80 °C. After cooling, the 3-oxosultams **19a,h,j** were isolated and recrystal-lized from ethanol; **19i** was not isolated. – Method B – A stirred solution of isothiazolium salts **10a** – **c** (0.3 mmol) in acetonitrile was treated with MMPP · 6H₂O (0.9 mmol) and the mixture was left in the ultrasound bath for 3 h at 50 °C. The excess MMPP · 6H₂O is decomposed by addition of thiosulfate, the generated acid is neutralized with saturated aqueous NaHCO₃ and the mixture was extracted with Et₂O (3 x). The combined organic layers were dried over MgSO₄. The solvent was evaporated and the 3-oxosultams **19a** – **c** were purified by recrystallization from ethanol.

Compounds 19b, d were described in [15] and 19c, e-g in [8a].

2-(2-Methoxyphenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (**19a**)

Yield: 40% (method A), 83% (method B); m.p. 138– 141 °C. – IR (KBr): v = 1140 s (SO₂), 1325 s (SO₂), 1734 s (C=O). – ¹H NMR ([D₆]acetone): $\delta = 1.81 - 1.95$ (m, 4H, 2 CH₂), 2.44–2.63 (m, 4H, 2 CH₂), 3.80 (s, 3H, OCH₃), 7.01–7.57 (m, 4H, arom. H). – ¹³C NMR ([D₆]acetone): Table 5. Analytical data of 3-alkoxy-2-aryl-2,3,4,5,6,7-hexahydro-1,2-benzisothiazole 1,1-dioxides 18.

Comp.	¹ H NMR ([D ₆]acetone), δ (ppm) L (Hz)	13 C NMR ([D ₆]acetone), δ (ppm)	EI-MS m/z (%)	Molecular formula –	$IR (cm^{-1})$	EA caled/found
	(ppin), ((iii)	(ppm)		molecular weight		earea, roana
18a	7.51–7.41 (m, 2 H), 7.20-7.17 (m, 1 H), 7.09–7.04 (m, 1 H), 5.90 (s, 1 H), 3.89 (s, 3 H), 3.63, 3.35 (ABC ₃ , ${}^{2}J$ = 8.1, ${}^{3}J$ = 6.9, 2 H), 2.45–2.34 (m, 4 H), 1.93–1.78 (m, 4 H), 1.93–1.78	158.2, 142.0, 136.8, 132.2, 131.5, 130.6, 121.6, 113.6, 88.7, 60.0, 56.2, 23.6, 21.9, 21.8, 19.2, 15.3	323 (M ⁺ , 38), 278 (74), 149 (100)	C ₁₆ H ₂₁ NO ₄ S 323.44	1294 (SO ₂), 1157 (SO ₂)	C 59.42/59.49 H 6.54/6.59 N 4.33/4.21 S 9.91/10.04
18b	(iii, 4 H), 1.99 (i, $J = 0.6, 5$ H) 7.54–7.40 (m, 2 H), 7.20–7.17 (m, 1 H), 7.09–7.04 (m, 1 H), 5.89 (s, 1 H), 3.90 (s, 3 H), 3.70 (${}^{3}J = 6.3, 1$ H), 2.45–2.34 (m, 4 H), 1.89–1.79 (m, 4 H), 1.02 (d, 6 H)	158.2, 142.8, 135.4, 132.4, 131.6, 130.5, 121.6, 113.6, 88.5, 71.4, 56.3, 23.8, 23.4, 23.0, 22.0, 21.9, 19.2	337 (M ⁺ , 28), 278 (100)	C ₁₇ H ₂₃ NO ₄ S 337.44	1296 (SO ₂), 1153 (SO ₂)	C 60.51/60.80 H 6.87/7.05 N 4.15/4.23 S 9.50/9.76
18c	(a) $7.38/7.00$ (2 d, $J = 9.1, 4$ H), 5.78 (c) 1 H), 3.82 (c) 3 H), 3.54, 3.31 (ABC ₃ , ${}^{2}J = 9.2, {}^{3}J = 7.0, 2$ H), 2.42 - 2.31 (m, 4 H), 1.83 (m, 4 H), 1.08 (t) - 7.0, 3 H)	159.7, 142.4, 137.0, 129.2, 127.9, 115.8, 89.6, 60.1, 56.2, 23.9, 22.3, 22.2, 19.4, 15.7	323 (M ⁺ , 74), 278 (100)	C ₁₆ H ₂₁ NO ₄ S 323.44	1292 (SO ₂), 1152 (SO ₂)	C 59.42/59.40 H 6.54/6.42 N 4.33/4.13 S 9.91/9.80
18d	$\begin{array}{c} 7.39/\ 7.01\ (2\ d,\ J=9.0,\ 4\ H),\\ 5.78\ (s,\ 1\ H),\ 3.83\ (s,\ 3\ H),\ 3.42\\ (^3J=6.1,\ 1\ H),\ 2.40-2.37\ (m,\ 4\\ H),\ 1.83-1.80\ (m,\ 4\ H),\ 1.03\ (d,\ 6\\ H) \end{array}$	159.7, 142.8, 135.5, 130.9, 128.7, 115.8, 89.4, 71.4, 55.8, 23.7, 23.5, 23.1, 21.9, 21.8, 19.1	337 (M ⁺ , 28), 278 (30), 122 (100)	C ₁₇ H ₂₃ NO ₄ S 337.44	1297 (SO ₂), 1153 (SO ₂)	C 60.51/60.20 H 6.87/7.13 N 4.15/4.03 S 9.50/9.35
18e	7.39/7.03 (2 d, $J = 8.7, 4$ H), 5.78 (s, 1 H), 3.85 (s, 3 H), 2.53-2.33 (m, 4 H), 1.90 – 1.79 (m, 4 H), 1.02 (s, 9 H)	159.4, 144.2, 134.2, 133.1, 128.5, 115.3, 86.6, 84.4, 55.8, 29.1, 23.3, 22.0, 21.9, 18.9	351 (M ⁺ , 3), 295 (16), 122 (100)	C ₁₈ H ₂₄ NO ₄ S 350.46	1282 (SO ₂), 1151 (SO ₂)	C 61.69/61.78 H 6.90/7.26 N 3.40/3.29 S 9.15/8.98
18f	7.36/ 7.24 (2 d, <i>J</i> = 8.2, 4 H), 5.93 (s, 1 H), 3.11 (s, 3 H), 2.43 (m, 4 H), 2.32 (s, 3 H), 1.83 (m, 4 H)	142.1, 138.1, 136.5, 134.8, 131.5, 123.5, 88.7, 50.7, 24.0, 22.5, 22.4, 21.5, 19.6	293 (M ⁺ , 57), 262 (100)	C ₁₅ H ₁₉ NO ₃ S 293.41	1295 (SO ₂), 1153 (SO ₂)	C 61.40/61.20 H 6.53/6.46 N 4.77/4.67 S 10.93/11.40
18g	7.35/7.23 (2 d, $J = 8.4$, 4 H), 5.91 (s, 1 H), 3.47, 3.29 (ABC ₃ , ${}^{2}J =$ 9.3, ${}^{3}J =$ 7.2, 2 H), 2.41 (m, 4 H), 2.32 (s, 3 H), 1.83 (m, 4 H), 1.06 (t, $J =$ 7.2, 3 H)	142.3, 137.0 136.2, 134.6, 131.1, 123.4, 88.3, 59.5, 23.8, 22.2, 22.1, 21.2, 19.3, 15.7	307 (M ⁺ , 57), 262 (100)	C ₁₆ H ₂₁ NO ₃ S 307.44	1287 (SO ₂), 1154 (SO ₂)	C 62.51/62.22 H 6.89/6.86 N 4.56/4.49 S 10.43/10.61
18h	8.04/7.54 (2 d, $J = 9.2$, 4 H), 6.12 (s, 1 H), 3.86 (s, 3 H), 3.31 (ABC ₃ , ² $J = 13.6$, ³ $J = 7.0$, 2 H), 2.44– 2.34 (m, 4 H), 1.90–1.81 (m, 4 H), 1.04 (t, $J = 7.0$, 3 H)	167.3, 142.6, 141.9, 137.3, 132.2, 126.4, 118.5, 86.9, 59.1, 52.9, 24.1, 22.4, 22.2, 19.4, 15.8	351 (M ⁺ , 31), 306 (100)	C ₁₇ H ₂₁ NO ₅ S 351.43	1716 (C=O), 1279 (SO ₂), 1155 (SO ₂)	C 58.10/58.52 H 6.02/5.78 N 3.99/4.17 S 9.13/9.42
18i	7.67 – 7.50 (m, 4 H), 5.86 (s, 1 H), 3.31 (s, 3 H), 2.51 – 2.37 (m, 4 H), 1.94-1.84 (m, 4 H)	141.3, 137.3, 135.4, 133.6, 133.2, 131.4, 131.0, 128.7, 90.4, 51.5, 23.4, 21.5, 21.4, 18.9	313 (M ⁺ , 11), 282 (39)	C ₁₄ H ₁₆ ClNO ₃ S 313.81	1306 (SO ₂), 1161 (SO ₂)	C 53.59/54.08 H 5.14/5.36 N 4.46/4.88 S 10.22/10.03
18j	7.83–7.60 (m, 3 H), 5.64 (s, 1 H), 3.33 (s, 3 H), 2.36–2.25 (m, 4 H), 1.72 (m, 4 H)	141.8, 136.5, 134.5, 132.3, 131.6, 130.8, 130.7, 130.2, 91.2, 52.9, 23.5, 21.3, 21.2, 19.0	347 (M ⁺ , 26), 316 (43)	C ₁₄ H ₁₅ Cl ₂ NO ₃ S 347.90	1292 (SO ₂), 1165 (SO ₂)	C 48.33/48.76 H 4.35/4.55 N 4.03/3.96 S 9.22/9.01
18k	7.51 (m, 4 H), 6.05 (s, 1 H), 3.45, 3.31 (ABC ₃ , ${}^{2}J = 8.1$, ${}^{3}J = 7.0$, 2 H), 2.48–2.39 (m, 4 H), 1.92– 1.84 (m, 4 H), 1.11 (t, $J = 7.0$, 3 H)	141.4, 136.0, 135.2, 129.6, 129.5, 121.9, 86.6, 58.3, 22.9, 21.2, 21.0, 18.2, 14.6	350 (M+Na ⁺ , 100), 282 (39)	C ₁₅ H ₁₈ ClNO ₃ S 327.81	1276 (SO ₂), 1153 (SO ₂)	C 54.95/55.50 H 5.53/5.93 N 4.27/4.44 S 9.78/9.69
181	8.21–7.62 (m, 4 H), 5.74 (s, 1 H), 3.70, 3.40 (ABC ₃ , ${}^{2}J$ = 8.1, ${}^{3}J$ = 6.8, 2 H), 2.43–2.26 (m, 4 H), 1.97–1.72 (m, 4 H), 1.15 (t, J = 7.0, 3 H)	142.4, 136.7, 135.8, 134.7, 133.8, 131.5, 126.5, 125.8, 91.9, 61.6, 23.8, 21.8, 21.7, 19.2, 15.3	338 (M ⁺ , 3), 293 (100)	C ₁₅ H ₁₈ N ₂ O ₅ S 338.4	1535 (NO ₂), 1354 (NO ₂), 1296 (SO ₂), 1163 (SO ₂)	C 53.20/52.84 H 5.36/5.42 N 8.28/8.75 S 9.48/10.11
18m	8.33/7.65 (2 d, $J = 9.3, 4$ H), 6.21 (s, 1 H), 3.34 (ABC ₃ , ² $J = 10.4$, ³ $J = 7.0, 2$ H), 2.48–2.41 (m, 4 H), 1.88–1.85 (m, 4 H), 1.08 (t, J = 7.0, 3 H)	142.9, 142.1, 136.7, 126.0, 122.8, 117.8, 86.5, 58.7, 23.6, 21.8, 21.6, 18.8, 15.2	338 (M ⁺ , 30), 293 (100)	C ₁₅ H ₁₈ N ₂ O ₅ S 338.4	1508 (NO ₂), 1340 (NO ₂), 1286 (SO ₂), 1153 (SO ₂)	C 53.20/53.68 H 5.36/5.79 N 8.28/7.83 S 9.48/9.13

δ = 20.1, 21.6, 21.8, 22.1 (C-4, C-5, C-6, C-7), 57.1 (OCH₃), 114.5 (arom. CH), 119.1 (arom. C), 122.4 (arom. CH), 132.7, 133.3 (2 arom. CH), 137.5 (C-3a), 148.3 (C-7a), 158.7 (arom. C), 160.7 (C-3). – EI-MS: m/z = 293 (M⁺). – C₁₄H₁₅NO₄S (293.33): calcd. C 57.33, H 5.15, N 4.77, S 10.93; found C 57.39, H 5.01, N 4.85, S 11.07.

2-(4-Chlorophenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (**19h**)

Yield: 51% (method A), m. p. 111 – 113 °C. – IR (KBr): v = 1170 s (SO₂), 1330 s (SO₂), 1740 s (C=O). – UV (ethanol): λ_{max} (lg ε) 265.5 (3.21). – ¹H NMR ([D₆]acetone): $\delta = 1.84$ – 1.91 (m, 4H, 2 CH₂), 2.49 – 2.67 (m, 4H, 2 CH₂), 7.40, 7.49 (4H, $J_{AB} = 8.2$ Hz, arom. H). – ¹³C NMR ([D₆]acetone): $\delta = 19.6$, 20.9, 21.0, 21.3 (C-4, C-5, C-6, C-7), 128.2 (arom. C), 129.7 (2 arom. CH), 130.6 (2 arom. CH), 136.2 (arom. C), 136.8 (C-3a), 146.8 (C-7a), 160.1 (C-3). – EI-MS: m/z = 297 (M⁺). – C₁₃H₁₂CINO₃S (297.77): calcd. C 52.43, H 4.07, Cl 11.90, N 4.70, S 10.77; found C 52.15, H 3.95, Cl 11.79, N 4.75, S 10.73.

- [1] B. H. Kim; D. P. Curran, Tetrahedron 49, 293 (1993).
- [2] Z. Liu, Y. Takeuchi, Heterocycles 56, 693 (2002).
- [3] A. Siegemund, K. Taubert, B. Schulze, Sulfur Reports 23, 279 (2002).
- [4] B. Schulze, K. Illgen, J. Prakt. Chem. 339, 1 (1997).
- [5] a) K. H. Ahn, H.-H. Baek, S. J. Lee, C.-W. Cho, J. Org. Chem. 65, 7690 (2000); b) Z. Liu, N. Shibata, Y. Takeuchi, J. Chem. Soc., Perkin Trans. 1, 302 (2002).
- [6] Y. Takeuchi, T. Suzuki, A. Satoh, T. Shiragami, N. Shibata, J. Org. Chem. 64, 5708 (1999).
- [7] D. C. Baker, A. Mayasundari, J. Mao, S. C. Johnson, S. Yan, PCT Int. Appl. WO 0 004 004 A1, 2000; Chem. Abstr. 132, 122613 (2000).
- [8] a) C. Hartung, K. Illgen, J. Sieler, B. Schneider, B. Schulze, Helv. Chim. Acta 82, 685 (1999); b) A. Siegemund, C. Hartung, S. Baumann, B. Schulze, Helv. Chim. Acta 87, 376 (2004).
- [9] F.G. Gelalcha, B. Schulze, J. Org. Chem. 67, 8400 (2002).
- [10] S. Baumann, M. Möder, R. Herzschuh, B. Schulze, Chromatographia 57, S-147 (2003).
- [11] K. Taubert, A. Siegemund, A. Eilfeld, S. Baumann, J. Sieler, B. Schulze, Synthesis 14, 2265 (2003).
- [12] B. Schulze, U. Obst, G. Zahn, B. Friedrich, R. Cimi-

raglia, H.-J. Hofmann, J. Prakt. Chem. **337**, 175 (1995).

- [13] B. Schulze, B. Friedrich, S. Wagner, P. Fuhrmann, J. Prakt. Chem. **338**, 424 (1996).
- [14] M. Gütschow, M. Pietsch, K. Taubert, T.H-E. Freysoldt, B. Schulze, Z. Naturforsch. 58b, 111 (2003).
- [15] B. Schulze, S. Kirrbach, K. Illgen, P. Fuhrmann, Tetrahedron 52, 783 (1996).
- [16] Crystals were obtained from acetone. The intensities were measured on a Siemens SMART CCD diffractometer. Data collection and cell refinement are listed in the text. The structure was solved by direct methods with SHELX-97 [17]. The refinement was done with SHELX-97 [18]. Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 229722 for **18k**. Copies of the data can be obtained, free of charge, from CCDC, 12 Union Road, Cambridge, CB2 1EZ. UK (fax: +44(1233)336033; e-mail: deposit@ccdc.cam.ac.uk; internet: http://www.ccdc.cam.ac.uk).
- [17] G. M. Sheldrick, Acta Crystallogr. 46, 467 (1990).
- [18] G. M. Sheldrick, SHELXL-97, Program for the refinement of crystal structures, Göttingen, Germany (1997).

2-(4-Nitrophenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (**19**j)

Yield: 49% (method A), m. p. 157–159 °C. – IR (KBr): v = 1183 s (SO₂), 1297 s (SO₂), 1345 s (NO₂), 1519 s (NO₂), 1735 s (C=O). – UV (ethanol): λ_{max} (lg ε) 271.0 (3.99). – ¹H NMR ([D₆]acetone): $\delta = 1.90-1.96$ (m, 4H, 2 CH₂), 2.54–2.70 (m, 4H, 2 CH₂), 7.86, 8.45 (4H, $J_{AB} =$ 9.0 Hz, arom. H). – ¹³C NMR ([D₆]acetone): $\delta = 19.2$, 20.8, 20.9, 21.22 (C-4, C-5, C-6, C-7), 125.2 (2 arom. CH), 130.6 (2 arom. CH), 135.5 (arom. C), 137.5 (C-3a), 146.9 (arom. C), 147.3 (C-7a), 156.7 (C-3). – EI-MS: m/z =308 (M⁺). – C₁₃H₁₂N₂O₅S (308.32): calcd. C 50.64, H 3.92, N 9.09, S 10.40; found C 50.76, H 3.81, N 9.02, S 10.47.

Acknowledgements

Financial support of this work by the Fond der Chemischen Industrie, the Graduiertenkolleg 378 "Mechanistische und Anwendungsaspekte nichtkonventioneller Oxidationsreaktionen", and the UFZ Leipzig-Halle (for HPLC-MS-analysis) is gratefully acknowledged.