Organoaluminium and -gallium Lewis-Acid Adducts of Tetramethylmethylenediamine Norbert W. Mitzel and Christian Lustig Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 30, D-48149 Münster, Germany Reprint requests to Prof. Dr. N. W. Mitzel. Fax +49(0)251 83 36007. E-mail: Mitzel@uni-muenster.de Z. Naturforsch. **59b**, 1532 – 1539 (2004); received August 31, 2004 Dedicated to Professor Hubert Schmidbaur on the occasion of his 70th birthday The compounds Me₃Al-Me₂NCH₂NMe₂-AlMe₃ (1) and Me₃Ga-Me₂NCH₂NMe₂-GaMe₃ (2) were prepared by reacting Me₂NCH₂NMe₂ (TMMDA) with two equivalents of the metal trialkyls in hydrocarbon solutions. With the ether adduct Me₃Ga-OEt₂ Me₂NCH₂NMe₂ reacts to give the monoadduct Me₂NCH₂NMe₂-GaMe₃ (3). These compounds were characterized by NMR spectroscopy (¹H, ¹³C and ²⁷Al) and by elemental analyses. Crystal structure investigations show 1 and 2 to be monomeric and to a adopt a *trans,trans*-conformation for their M-N-C-N-M backbones. 3 is also monomeric in the solid state, but adopts a *cis,trans*-conformation. Tetramethylformamidinium chloride and also chlorotetramethylformamidinium chloride reacts with lithium aluminium hydride to give the mono-adduct [Me₂NCH₂NMe₂-AlH₃]₂ (4), which is dimeric and can be regarded as a double TMMDA adduct to Al₂H₆ with five-coordinate Al atoms. *Ab initio* calculations on the MP2/6-311G** level of theory have been performed for the model compound H₃N-H₂Al(μ-H)₂AlH₂-NH₃ to obtain its molecular structure and vibrational spectrum for comparison with 4 and for the assignment of its vibrational spectrum. Key words: Aluminium, Gallium, Aminal Adduct, Crystal Structure, ab initio Calculations