Macrocyclic Gold(I) Complexes with Bridging Diacetylide and Diphosphine Ligands

William J. Hunks, Michael C. Jennings, and Richard J. Puddephatt

Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7

Reprint requests to Prof. Dr. R. J. Puddephatt. E-mail: pudd@uwo.ca

Z. Naturforsch. 59b, 1488 – 1496 (2004); received August 26, 2004

Dedicated to Professor Hubert Schmidbaur, the undisputed champion of gold chemistry, on the occasion of his 70th birthday

The new dialkynyldigold(I) complexes $[Ar(OCH_2C\equiv CAu)_2]_n \{Ar = 1,4-C_6H_4(CMe_2-4-C_6H_4)_2, 4,4'-C_6H_4C_6H_4 \text{ and } 1,5-C_{10}H_6\}$ react with diphosphines LL = Ph₂P(CH₂)_nPPh₂ (n = 1 to 6) and *trans*-Ph₂PCH=CHPPh₂ to give luminescent macrocyclic digold(I) or tetragold(I) complexes with bridging diphosphine and diacetylide ligands. The digold(I) complex $[1,4-C_6H_4(CMe_2-4-C_6H_4OCH_2C\equiv CAu)_2(\mu-LL)]$, with LL = *trans*-Ph₂PCH=CHPPh₂, forms a 28-membered ring, and the rings associate through aurophilic bonding in the solid state. In contrast, the tetragold(I) complex $[4,4'-C_6H_4C_6H_4(OCH_2C\equiv CAu)_2(\mu-LL)]$, with LL = Ph₂PCH₂PPh₂, forms a more rigid 42-membered ring.

Key words: Gold, Macrocycle, Diacetylide, Diphosphine, Luminescence