Synthesis and Reactivity of Novel Alkali Metal Stannides

Thorsten Schollmeier^b, Ulrich Englich^c, Roland Fischer^a, Ingo Prass^b, Karin Ruhlandt^c, Markus Schürmann^b, and Frank Uhlig^a

^a Institut für Anorganische Chemie, Technische Universität Graz,
Stremayrgasse 16, A-8010 Graz, Austria
^b Fachbereich Chemie der Universität Dortmund, Anorganische Chemie II,

Otto-Hahn-Straße 6, D-44221 Dortmund, Germany

c Syracuse University, Department of Chemistry, 1-014 Center of Science and Technology, Syracuse, N.Y., USA

Reprint requests to Prof. Dr. F. Uhlig. Fax: +43-316-873-8701. E-mail: frank.uhlig@tugraz.at

Z. Naturforsch. **59b,** 1462 – 1470 (2004); received August 24, 2004

Dedicated to Professor Hubert Schmidbaur on the occasion of his 70th birthday

Reactivity and side products of reactions of diorganodihydridostannanes (R₂SnH₂, R = Me, ⁿBu, ^tBu)) with various alkali metal compounds have been discussed. Alternatively, the synthesis and characterization of a family of novel potassium stannides are described as well. The compounds of type (RR'₂Si)R"₂SnK (R, R'= Me, Ph; R"= , Me, ^tBu, Ph) 4–9 were synthesized by reaction of potassium hydride with bis(silyl)stannides ((RR'₂Si)₂SnR"₂). All compounds were characterized by multinuclear NMR spectroscopy. In addition, the tri-*tert*-butyltin compound 3 (LiSn'Bu₃) and the unsymmetrical silyl substituted stannane 10 were characterized by X-ray crystallography.

Key words: Alkali Metal Stannides, Preparation, Reactivity, ¹¹⁹Sn and ²⁹Si NMR Spectroscopy, Structure Elucidation