The Modulated Structure of SrAuSn_{2}

Saeid Esmailzadeh ${ }^{\text {a }}$, Rolf-Dieter Hoffmann ${ }^{\text {b }}$, and Rainer Pöttgen ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
${ }^{\text {b }}$ Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de
Z. Naturforsch. 59b, 1451 - 1457 (2004); received August 24, 2004
\section*{Dedicated to Professor Hubert Schmidbaur on the occasion of his $70^{\text {th }}$ birthday}

The ternary stannide SrAuSn_{2} was synthesized by induction melting of the elements under an argon atmosphere in a sealed niobium ampoule in a water-cooled sample chamber of a high-frequency furnace. The structure of SrAuSn_{2} was investigated by X-ray powder and single crystal diffraction. It was found to be favourable to describe as a commensurately modulated structure. The $3+1$ dimensional superspace group symmetry $P: \operatorname{Cmcm}(\alpha, 0,0): 0$ s 0 with the unit cell dimensions $a=460.20(14), b=2038.8(8), c=460.34(19) \mathrm{pm}$ and the modulation wave vector $\mathbf{q}=1 / 4$ [100]*. The Sn 1 atoms were those with the strongest modulation while the rest of the atoms showed rather small deviations from the average structure. The SrAuSn_{2} structure is closely related to the CeNiSi_{2} type. Geometrically these structures are built up from distorted $\mathrm{ThCr}_{2} \mathrm{Si}_{2}$ and AlB_{2} slabs. The gold atoms are located in the $\mathrm{ThCr}_{2} \mathrm{Si}_{2}$ slab. They have a distorted square pyramidal tin coordination at $\mathrm{Au}-\mathrm{Sn}$ distances ranging from 266 to 294 pm . These pyramids are condensed via common edges forming two-dimensional layers. The latter are condensed via the Sn 1 atoms within the AlB_{2} slabs that form one-dimensional zigzag chains with $\mathrm{Sn} 1-\mathrm{Sn} 1$ distances ranging from 282 to 288 pm . These chains show the strong modulations. Together, the gold and tin atoms build up a three-dimensional [AuSn_{2}] network, in which the strontium atoms fill distorted hexagonal channels.

Key words: Stannide, Crystal Structure, Modulated Structure

