Pt-Dumbbells in Ba₃Pt₂: Interplay of Geometric and Relativistic Effects on Pt–Pt Bonding

Andrey Karpov, Ulrich Wedig, and Martin Jansen

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany

Reprint requests to Prof. Dr. Martin Jansen. E-mail: m.jansen@fkf.mpg.de

Z. Naturforsch. 59b, 1387-1394 (2004); received August 16, 2004

Dedicated to Professor Hubert Schmidbaur on the occasion of his 70th birthday

Ba₃Pt₂ has been synthesized by reaction of a 3 : 2 mixture of Ba and Pt at 1223 K in argon, and characterized by single-crystal X-ray structure determination and electrical resistivity measurements. Ba₃Pt₂ crystallizes in the Er₃Ni₂ structure type (space group $R\bar{3}$ with a = 962.40(6), c = 1860.6(1) pm, Z = 9, $R(F)_{N'} = 0.063$, N'(hkl) = 777), and is isotypic to Ca₃Pt₂ and Sr₃Pt₂. The Pt atoms occur in pairs at a distance of 303 pm. According to the analysis of the Electron Localization Function and the Crystal Orbital Hamilton Population obtained from DFT band structure calculations, covalent bonding can be assumed in the Pt-dumbbells, although it is weaker in Ba₃Pt₂ than in Ca₃Pt₂. The peculiarities of the platinum compounds due to relativistic effects are elaborated by a comparison with theoretical results for Ca₃Pd₂. Ba₃Pt₂ exhibits metallic conductivity ($\rho_{270} = 0.7 \text{ m}\Omega \cdot \text{cm}$), which is in accordance with band structure calculations.

Key words: Barium, Band Structure Calculation, Crystal Structure, Intermetallic Compound, Platinum