Self-Assembly of a Cd\(^{2+}\) Compound with 4-Pyridylthioacetic Acid: Structural and Luminescence Properties

Biing-Chiau Tzeng and Hsien-Te Yeh

Department of Chemistry and Biochemistry, National Chung Cheng University, 160 San-Hsin, Min-Hsiung, Chia-Yi, Taiwan 621

Reprint requests to Dr. B.-C. Tzeng. E-mail: chebct@ccu.edu.tw

Z. Naturforsch. 59b, 1320 – 1324 (2004); received August 9, 2004

Dedicated to Professor Hubert Schmidbaur on the occasion of his 70\(^{th}\) birthday

An interesting 3-D supramolecular architecture has been constructed through O-H···O and S···S weak interactions based on a neutral 1-D coordination polymer, [Cd(pyta)\(_2\)(H\(_2\)O)]\(_n\) (pyta = pyridylthiocarboxylate), by self-assembly of the Cd\(^{2+}\) ion and Hpyta ligand. This supramolecular approach is achieved in combination of coordinative bonds, O-H···O and S···S interactions. The tetragonal unit of 1-D coordination polymers forms a 1-D channel structure with a dimension of 5.35 \(\times\) 6.86 Å\(^2\) in the solid state, leading to the formation of zeolite-like materials. In combination with the zeolite-like nature of the title compound as well as its luminescence behavior, it is expected to find useful applications in luminescence sensing for VOCs (volatile organic compounds).

Key words: Self-Assembly, Luminescence, Supramolecular, Coordination Polymers, Volatile Organic Compounds