Nucleophilic Aromatic Substitution of 2-(3(5)-Pyrazolyl)pyridine: A Novel Access to Multidentate Chelate Ligands

Katrin Rößler^a, Tobias Kluge^a, Anett Schubert^a, Yu Sun^{a,b}, Eberhardt Herdtweck^c, and Werner R. Thiel^{a,b}

^a Institut für Chemie, Technische Universität Chemnitz,
Straße der Nationen 62, D-09111 Chemnitz, Germany
^b New address: Fachbereich Chemie, Technische Universität Kaiserslautern,
Erwin-Schrödinger-Str. Geb. 54, D-67663 Kaiserslautern, Germany
^c Anorganisch-chemisches Institut, Technische Universität München,

Reprint requests to Prof. Dr. W. R. Thiel. thiel@chemie.uni-kl.de Z. Naturforsch. **59b**, 1253 – 1263 (2004); received August 5, 2004

Lichtenbergstr. 4, D-85748 Garching, Germany

Dedicated to Professor Hubert Schmidbaur on the occasion of his 70th birthday

1-(Nitrophenyl) functionalized 2-(3-pyrazolyl)pyridines were obtained by a nucleophilic aromatic substitution and could be reduced to the corresponding aminophenyl substituted derivatives. These compounds can be used to co-ordinate transition metal sites or for the generation of building blocks for supramolecular chemistry. The solid state structure of a 1,1'-functionalized ferrocene, which was obtained following this route, is discussed in detail.

Key words: Chelate Ligands, Ferrocene, Nucleophilic Aromatic Substitution