Indirect Nuclear Spin-Spin Coupling Constants ${}^{n}J({}^{11}B, {}^{1}H)$ and ${}^{n}J({}^{11}B, {}^{11}B)$ in Some Boron Hydrides - Density Functional Theory (DFT) Calculations

Bernd Wrackmeyer

Anorganische Chemie II, Universität Bayreuth, D-95440 Bayreuth, Germany

Reprint requests to Prof. Dr. B. Wrackmeyer. E-mail: b.wrack@uni-bayreuth.de

Z. Naturforsch. 59b, 1192-1199 (2004); received June 25, 2004

Dedicated to Professor Hubert Schmidbaur on the occasion of his 70th birthday

Indirect nuclear spin-spin coupling constants $J({}^{11}B, {}^{11}H)$ and $J({}^{11}B, {}^{11}B)$ in neutral and anionic boron hydrides **1** – **17**, calculated at the B3LYP/6-311+G(d,p) level of theory, are in good agreement with experimental data if available. This is shown for $[BH_4]^-$ (**1**), B_2H_6 (**2**), B_4H_{10} (**3**), B_5H_9 (**4**), or $[B_2H_7]^-$ (**12**). The calculations can be used to obtain values for those coupling constants for which experimental information is hardly accessible. This applies to complex spin systems involving the quadrupolar ¹¹B nuclei such as in $[B_6H_6]^{2-}$ (**11**), to fast dynamic processes such as in B_6H_{10} (**5**), $[B_5H_8]^-$ (**10**), $[B_6H_7]^-$ (**11-H**), $[B_3H_8]^-$ (**13**), $Be(BH_4)_2$ (**14**), (η^5 -C₅H₅)BeBH₄ (**15**), $Be(B_3H_8)_2$ (**16**), $Me_2AlB_3H_8$ (**17**), or to instable species such as $[B_2H_6]^{2-}$ (**6**), B_2H_4 (**7**), B_3H_7 (**8**), and B_4H_8 (**9**). The experimental ¹¹B NMR spectrum reported in the literature for the dianion **6** does not resemble the spectrum predicted on the basis of the calculated coupling constants.

Key words: Boranes, Hydroborate Anions, NMR, Coupling Signs, DFT Calculations