Indirect nuclear spin-spin coupling constants $^nJ(1^{11}B, ^1H)$ and $^nJ(1^{11}B, 1^{11}B)$ in Some Boron Hydrides - Density Functional Theory (DFT) Calculations

Bernd Wrackmeyer

Anorganische Chemie II, Universität Bayreuth, D-95440 Bayreuth, Germany

Reprint requests to Prof. Dr. B. Wrackmeyer. E-mail: b.wrack@uni-bayreuth.de

Z. Naturforsch. 59b, 1192 – 1199 (2004); received June 25, 2004

Dedicated to Professor Hubert Schmidbaur on the occasion of his 70th birthday

Indirect nuclear spin-spin coupling constants $J(1^{11}B, ^1H)$ and $J(1^{11}B, 1^{11}B)$ in neutral and anionic boron hydrides 1 – 17, calculated at the B3LYP/6-311+G(d,p) level of theory, are in good agreement with experimental data if available. This is shown for $[BH_4]^{-}$ (1), B_2H_6 (2), B_3H_{10} (3), B_5H_9 (4), or $[B_2H_7]^{-}$ (12). The calculations can be used to obtain values for those coupling constants for which experimental information is hardly accessible. This applies to complex spin systems involving the quadrupolar ^{11}B nuclei such as in $[B_6H_6]^{2-}$ (11), to fast dynamic processes such as in B_6H_{10} (5), $[B_5H_8]^{-}$ (10), $[B_6H_7]^{-}$ (11-H), $[B_3H_8]^{-}$ (13), $Be(BH_3)_2$ (14), ($\eta^5-C_5H_5)BeBH_4$ (15), $Be(B_3H_8)_2$ (16), $Me_2AlB_3H_8$ (17), or to instable species such as $[B_2H_6]^{2-}$ (6), B_2H_4 (7), B_3H_7 (8), and B_4H_8 (9). The experimental ^{11}B NMR spectrum reported in the literature for the dianion 6 does not resemble the spectrum predicted on the basis of the calculated coupling constants.

Key words: Boranes, Hydroborate Anions, NMR, Coupling Signs, DFT Calculations