Phase Transitions and Distortion of [BiCl₆]³⁻ Octahedra in (C₃H₅NH₃)₃[BiCl₆] – DSC and Single-Crystal X-Ray Diffraction Studies

Bartosz Zarychta, Maciej Bujak, and Jacek Zaleski

Z. Naturforsch. **59b**, 1029 – 1034 (2004); received May 3, 2004

Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland

Reprint requests to Prof. J. Zaleski. Fax: (+48)-77-4410741. E-mail: zaleski@uni.opole.pl

The DSC diagram of tris(allylammonium) hexachlorobismuthate(III), $(C_3H_5NH_3)_3[BiCl_6]$, revealed three anomalies at 152, 191 and 299 K. The structure of the salt was determined at 200 and 315 K, below and above the high-temperature phase transition at 299 K. In both phases the crystals are monoclinic. At 200 K the space group is C^2/c whereas at 315 K it is C^2/m . The structures, at both temperatures, are composed of $[BiCl_6]^{3-}$ octahedra and allylammonium cations. The organic and inorganic moieties are attracted to each other by a network of the N–H…Cl hydrogen bonds. The relationship between corresponding parameters of the unit cells has been found. The phase transition at 299 K, of the order-disorder type, is attributed to the ordering of one non-equivalent allylammonium cation in the low-temperature phase.

Key words: Chlorobismuthates(III), Allylammonium Cation, Phase Transition, Disorder, Octahedral Distortion