Quaternäre Strontium-Kupfer(I)-Lanthanoid(III)-Selenide mit Cer und Praseodym: SrCuCeSe₃ und SrCuPrSe₃, ein ungleiches Geschwisterpaar

Quaternary Strontium Copper(I) Lanthanoid(III) Selenides with Cerium and Praseodymium: SrCuCeSe₃ and SrCuPrSe₃, Unequal Brother and Sister

Sabine Strobel und Thomas Schleid

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart Sonderdruckanforderungen an Prof. Dr. Th. Schleid. Fax: +49(0)711/685-4241. E-mail: schleid@iac.uni-stuttgart.de

Z. Naturforsch. **59b**, 985 – 991 (2004); eingegangen am 5. Juli 2004

Professor Kurt O. Klepp zum 60. Geburtstag gewidmet

Quaternary strontium copper(I) lanthanoid(III) selenides are formed by the oxidation of elemental strontium, copper and the corresponding lanthanoid with selenium. Orange to red needle-shaped single crystals of SrCuPrSe₃ and SrCuCeSe₃ have been synthesized by heating mixtures of Sr, Cu, Pr / Ce and Se with CsI as a flux in evacuated silica tubes to 800 °C for 7 d. Both compounds crystallize orthorhombically in space group Pnma with four formula units per unit cell, but with unlike lattice constants (a = 1097.32(6), b = 416.51(2), c = 1349.64(8) pm for SrCuPrSe₃ and a = 846.13(5), b = 421.69(2), c = 1663.42(9) pm for SrCuCeSe₃) and therefore different structure types. The Pr³⁺ cations in SrCuPrSe₃ are surrounded octahedrally by six Se²⁻ anions forming chains of edge-sharing [PrSe₆]⁹⁻ octahedra that are joined by common vertices. Together with [CuSe₁]⁷⁻ tetrahedra they form [CuPrSe₃]²⁻ layers piled up parallel (001). Between those layers the Sr²⁺ cations are coordinated by seven Se²⁻ anions in the shape of capped trigonal prisms linking the structure in the third dimension. On the other hand in SrCuCeSe₃ the Ce³⁺ cations as well as the Sr²⁺ cations adopt a coordination number of seven. Since the bonding distances between cerium and selenium match with those of strontium and selenium the two crystallographically independent sites of these cations are occupied statistically by Ce³⁺ and Sr²⁺ with equal ratios. Nevertheless, there is a close structural relationship between SrCuPrSe₃ and SrCuCeSe₃. Similar to SrCuPrSe₃ where Cu⁺ and Pr³⁺ cations together with Se²⁻ anions form [CuPrSe₃]²⁻ layers parallel (001), the Cu⁺ cations and [(Ce1/Sr1)Se₇]^{11.5} polyhedra in SrCuCeSe₃ build strongly puckered layers which are connected by $(Ce2)^{3+}/(Sr2)^{2+}$ cations. The copper selenium part in both compounds correlates as well, with $[CuSe_4]^{7-}$ tetrahedra linked by common vertices to form $[CuSe_3]^{5-}$ chains running along [010].

Key words: Lanthanides, Copper, Strontium, Selenides, Crystal Structures