On the Silicides EuIr$_2$Si$_2$ and Lu$_5$Si$_3$

Ute Ch. Rodewalda, Birgit Heyinga, Dirk Johrendtb, and Rainer Pöttgena

a Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
b Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5 – 13 (Haus D), D-81377 München, Germany

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 59b, 969 – 974 (2004); received June 18, 2004

Dedicated to Professor Kurt O. Klepp on the occasion of his 60th birthday

EuIr$_2$Si$_2$ was synthesized from the elements in a sealed tantalum tube in a water-cooled sample chamber of an induction furnace. Lu$_5$Si$_3$ was obtained by arc-melting of the elements. Both silicides were investigated by X-ray powder and single crystal diffraction: BaAl$_4$ type, $I4/mmm$, $a = 407.4(1)$ pm, $c = 1010.8(7)$ pm, $wR2 = 0.0492$, 134 F^2 values, 9 variables for EuIr$_2$Si$_2$ and Mn$_5$Si$_3$ type, $P6_3/mcm$, $a = 820.0(1)$ pm, $c = 614.2(1)$ pm, $wR2 = 0.0511$, 311 F^2 values and 12 variables for Lu$_5$Si$_3$. The iridium and silicon atoms in EuIr$_2$Si$_2$ build up a three-dimensional [Ir$_2$Si$_2$] network with Ir–Si and Si–Si interactions. The europium atoms fill cages within the network. The metal-rich silicide Lu$_5$Si$_3$ contains columns of face-sharing, empty Lu$_6$ octahedra and isolated silicon atoms in a distorted tri-capped trigonal prismatic coordination. Chemical bonding in these silicides is briefly discussed.

Key words: Silicide, Crystal Structure, Solid State Synthesis, Chemical Bonding