On the Silicides EuIr₂Si₂ and Lu₅Si₃

Ute Ch. Rodewald^a, Birgit Heying^a, Dirk Johrendt^b, and Rainer Pöttgen^a

^a Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany

 Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5 – 13 (Haus D), D-81377 München, Germany

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. **59b**, 969 – 974 (2004); received June 18, 2004

Dedicated to Professor Kurt O. Klepp on the occasion of his 60th birthday

EuIr₂Si₂ was synthesized from the elements in a sealed tantalum tube in a water-cooled sample chamber of an induction furnace. Lu₅Si₃ was obtained by arc-melting of the elements. Both silicides were investigated by X-ray powder and single crystal diffraction: BaAl₄ type, I4/mmm, a = 407.4(1), c = 1010.8(7) pm, wR2 = 0.0492, $134 F^2$ values, 9 variables for EuIr₂Si₂ and Mn₅Si₃ type, $P6_3/mcm$, a = 820.0(1), c = 614.2(1) pm, wR2 = 0.0511, $311 F^2$ values and 12 variables for Lu₅Si₃. The iridium and silicon atoms in EuIr₂Si₂ build up a three-dimensional [Ir₂Si₂] network with Ir–Si and Si–Si interactions. The europium atoms fill cages within the network. The metal-rich silicide Lu₅Si₃ contains columns of face-sharing, empty Lu₆ octahedra and *isolated* silicon atoms in a distorted tri-capped trigonal prismatic coordination. Chemical bonding in these silicides is briefly discussed.

Key words: Silicide, Crystal Structure, Solid State Synthesis, Chemical Bonding