The Solid Solution TmNi$_{1-x-y}$In$_{1+x}$

Mar’yana Lukachuka, Yaroslav M. Kalychakb, and Rainer Pöttgena

a Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany

b Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla and Mephodiya Street 6, 79005 Lviv/Ukraine

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 59b, 893 – 897 (2004); received April 25, 2004

The thulium nickel indide TmNiIn forms solid solutions TmNi$_{1-x-y}$In$_{1+x}$. Several samples have been prepared by arc-melting of the elements under argon. The structure of TmNiIn contains two crystallographically different nickel sites. The Ni1 atoms have a trigonal prismatic coordination by indium, while the Ni2 sites have six thulium neighbors in a trigonal prismatic arrangement. The Ni1 sites show defects in the solid solution, while the Ni2 sites have Ni2/In mixing with a maximal occupancy of 32 at.-% indium. The structures of three single crystals of solid solutions have been refined, leading to the compositions TmNi$_{0.88}$In$_{1.10}$ ($a = 747.06(7)$, $c = 367.8(1)$ pm, $wR^2 = 0.0342$, 323 F^2 values, 16 variables), TmNi$_{0.80}$In$_{1.16}$ ($a = 752.94(7)$, $c = 366.5(1)$ pm, $wR^2 = 0.0475$, 503 F^2 values, 16 variables), and TmNi$_{0.76}$In$_{1.21}$ ($a = 758.4(1)$, $c = 366.68(7)$ pm, $wR^2 = 0.0949$, 226 F^2 values, 16 variables). The crystal chemical peculiarities and the differences in chemical bonding are briefly discussed.

Key words: Solid Solution, Crystal Structure, Solid State Synthesis