A Second Modification of Mercury(I) Orthoarsenate(V): Preparation and Crystal Structure of β -(Hg₂)₃(AsO₄)₂ Matthias Weil Institute for Chemical Technologies and Analytics – Division of Structural Chemistry – Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria Reprint requests to Dr. M. Weil. E-mail: mweil@mail.zserv.tuwien.ac.at Z. Naturforsch. **59b**, 859 – 864 (2004); received April 13, 2004 Light-yellow crystals of a second modification of mercury(I) orthoarsenate(V), β -(Hg₂)₃(AsO₄)₂, were obtained during a diffusion-controlled precipitation reaction starting from diluted solutions of Hg₂(NO₃)₂, Hg(NO₃)₂, and H₃AsO₄. The crystal structure was determined from a single crystal X-ray diffraction data set. The previously reported crystal structure of synthetic *chursinite*, α -(Hg₂)₃(AsO₄)₂, has also been re-investigated and refined with better accuracy and precision. Both phases crystallize in space group type $P2_1/c$ (no. 14) [α - (β -): Z = 2 (4), a = 8.7915(6) (10.2034(18)), b = 5.0699(4) (8.5875(14)), c = 15.6839(10) (13.5172(19)) Å, $\beta = 128.761$ (1) (101.016(3))°, 1661 (3528) structure factors, 74 (146) parameters, $RF^2 > 2\sigma(F^2)$] = 0.0195 (0.0492)] and are made up from Hg₂²⁺ dumbbells and AsO₄³⁻ tetrahedra as the main building units, but the topologies of the structures are quite different. Key words: Mercury, Arsenate, Crystal Structure, Polymorphism