$A_5[Fe_3O_6]$ (A = Rb, Cs), Cs[FeO₂] und Cs₈[Fe₂O₇]: Neue Oxoferrate der schweren Alkalimetalle $A_5[Fe_3O_6]$ (A = Rb, Cs), Cs[FeO₂] and Cs₈[Fe₂O₇]: New Oxoferrates of the Heavy Alkaline Metals Gero Frisch und Caroline Röhr Institut für Anorganische und Analytische Chemie, Univ. Freiburg, Albertstr. 21, D-79104 Freiburg Sonderdruckanforderungen an Prof. Dr.-Ing. C. Röhr. E-mail: caroline@ruby.chemie.uni-freiburg.de Z. Naturforsch. **59b**, 771 – 781 (2004); eingegangen am 16. März 2004 The title compounds were synthesized at a temperature of 775 K *via* reaction of Fe₂O₃ with elemental cesium and rubidium alone or in combination with their hyperoxides AO₂ where required by stoichiometry. The structures of the dark-red crystals have been determined by single crystal x-ray diffraction (Cs[FeO₂]: cubic, space group Fd3m, a = 839.2(2) pm, Z = 8, R1 = 0.0547 and A₅[Fe₃O₆] (A = Cs: orthorhombic, space group $P2_12_12_1$, a = 861.8(2), b = 870.7(2), c = 1658.7(3) pm, Z = 4, R1 = 0.0617 and A = Rb: tetragonal, space group I42d, a = 862.01(8), c = 1504.7(2) pm, Z = 4, R1 = 0.0334). These three compounds contain three-dimensional networks [FeO₂], in the case of the ideal stuffed cristobalite composed of corner-sharing tetrahedra [FeO_{4/2}], in the case of the new mixed valence compounds A₅[Fe₃O₆] formed by corner-sharing of tetrahedra [Fe^{III}O_{4/2}] and triangles [Fe^{II}OO_{2/2}] in a 1:2 ratio. The crystal structure of the cation rich compound Cs₈[Fe₂O₇] (monoclinic, space group $P2_1/c$, a = 722.32(12), b = 1789.0(3), c = 733.88(12) pm, $\beta = 118.976(3)^\circ$, Z = 4, R1 = 0.0287) exhibits di-ferrate anions [Fe₂O₇]⁶⁻ composed of two corner-sharing [Fe^{III}O₄] tetrahedra with a linear Fe-O-Fe bridge. Key words: Ferrates, Oxoferrates