Unprecedented Coordination Environment in Poly-{\(\mu\)-bis(methylthienyltellane)(chlorido)(thienyl)platinum(II)}

Raija Oilunkaniemi\(^a\), Risto S. Laitinen\(^a\), and Markku Ahlgrén\(^b\)

\(^a\) Department of Chemistry, P.O. Box 3000, FIN-90014 University of Oulu, Finland.
\(^b\) Department of Chemistry, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland

Reprint requests to Prof. Risto Laitinen.
Fax: +358-8-553-1608, E-mail: Risto.Laitinen@oulu.fi

Z. Naturforsch. 59b, 614 – 616 (2004);
received December 4, 2003

The reaction of methylthienyltellane TeMeTh (Th = thienyl, C\(_4\)H\(_3\)S) and \([\text{PtCl}_2(\text{NCPh})_2]\) affords in addition to the main product \([\text{PtCl}_2(\text{TeMeTh})_2]\), also small amounts of yellow crystalline \([\text{PtCl}(\text{Th})(\text{TeMeTh})_2]_n\) that exhibits unprecedented quasi-octahedral coordination environment around platinum(II). There are four weak Pt-Te bonds of 2.898(1) and 3.419(1) Å forming an approximate square-plane the quasi-octahedral coordination being completed by a Pt-Cl bond of 2.400(2) Å and a Pt-C bond of 1.998(8) Å of a discrete thienyl ring. The TeMeTh acts as a bridging ligand. Tellurium shows a distorted tetrahedral coordination and the weak Pt-Te bonds can be rationalized in terms of sharing one tellurium electron lone-pair by two adjacent platinum centers. The closest contacts between the polymer chains involve thienyl rings.

Key words: Poly\{\(\mu\)-bis(methylthienyltellane)(chlorido)-(thienyl)platinum(II)}\}, Crystal Structure, Quasi-Octahedral Coordination