Magnetic Properties and Crystal Structure of a Cu^{II}Gd^{III} Heterodinuclear Schiff Base Complex

Ayhan Elmali and Yalçın Elerman

Ankara University, Faculty of Engineering, Department of Engineering Physics, 06100 Besevler-Ankara, Turkey

Reprint requests to Prof. Dr. A. Elmali. E-mail: elmali@eng.ankara.edu.tr

Z. Naturforsch. **59b**, 535 – 540 (2004); received January 19, 2004

The crystal structure and the magnetic properties of a heterodinuclear complex. [LCu(Me₂CO)Gd(NO₃)₃]₂ (L=N,N'-bis(2-hydroxy-3-methoxybenzylidene)-1.3-diaminopropane) are reported: [(C₁₀H₂₀N₂O₄)Cu(C₃H₆O)Gd(NO₃)₃]₂, triclinic, space group P1, with $a = 12.118.3(9), b = 13.562(3), c = 9.391(3) \text{ Å}, \alpha = 93.03(3), \beta = 107.65(2), \gamma = 73.07(2)^{\circ},$ $V = 1406.0(7) \text{ Å}^3$, Z = 1. The crystal structure consists of two independent binuclear $Cu^{II}Gd^{III}$ complexes and two non-coordinating acetone molecules in the asymmetric unit. The central region of the complexs is occupied by Cu^{II} and Gd^{III} ions which are bridged by two phenolato oxygen atoms of the ligand. The Cu^{II} ion is in a square-planar geometry and coordinated by four donor atoms of the ligand (N₂O₂). The Gd^{III} ion is deca-coordinated. In addition to the two phenolate oxygen atoms, its coordination sphere contains two oxygen atoms of the OMe side arms of L and six oxygen atoms from the three bidentate nitrate ions. The average $Cu \cdots Gd$ separation is 3.375(2) Å. The γT versus T plots, γ being the molar magnetic susceptibility per Cu^{II}Gd^{III} unit and T the temperature. has been measured in the 4-347 K range. The values of the intrachain interaction parameters have been deduced from the magnetic data: $J = 7.4 \text{ cm}^{-1}$, $g_{\text{Cu}} = 2.12$, $g_{\text{Gd}} = 2.06$. This indicates a weak ferromagnetic spin exchange interaction between Cu^{II} and Gd^{III} ions. The nature of the magnetic super-exchange interaction of the title compound is compared with similar Cu^{II}Gd^{III} heterodinuclear complexes.

Key words: Heterodinuclear Complex, Copper, Gadolinium, Crystal Structure, Magnetic Properties