The Coupling-Isomerization Approach to Enimines and the First Sequential Three-Component Access to 2-Ethoxy Pyridines*

Oana G. Dediua, Nasser A. M. Yehiab, and Thomas J. J. Müllera

a Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg

b Morphochem AG, Gmunder Str. 37-37a, D-81379 München

Reprint requests to Prof. Dr. T. J. J. Müller. E-mail: Thomas_J.J.Mueller@urz.uni-heidelberg.de

Z. Naturforsch. \textbf{59b}, 443 – 450 (2004); received January 30, 2004

\textit{Dedicated to Dr. Hans-Ulrich Wagner on the occasion of his 65th birthday}

The coupling-isomerization reaction (CIR) of electron-deficient halides 1 with N-[1-(hetero)aryl-prop-2-ynyl] tosyl amides 2 leads to the formation of N-tosyl enimines 3, in good to excellent yields. These electron deficient heterodienes are perfectly suited for Diels-Alder reactions with inverse electron demand. In the sense of a one-pot reaction a three-component CIR-cyclocondensation sequence of 1, 2\textsubscript{a}, and diethyl ketene acetal gives rise to the formation of 2-ethoxy 6-(p-anisyl)pyridines 4 in moderate to good yields.

\textit{Key words:} Alkynes, Catalysis, Cross-Couplings, Cyclocondensation, Pyridines