DNA-Binding Properties of Iron(II) Mixed-Ligand Complexes Containing 1,10-Phenanthroline and Dipyrido[3,2-a:2',3'-c]phenazine Mudasir^a, Karna Wijaya^a, Daryono H. Tjahjono^b, Naoki Yoshioka^c, and Hidenari Inoue^c - ^a Department of Chemistry, Gadjah Mada University, P.O. Box Bls. 21, Sekip Utara, Yogyakarta 55281, Indonesia - b Department of Pharmacy, Bandung Institute of Technology, Jalan Ganesha No.10, Bandung 40132, Indonesia - ^c Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan Reprint requests to Prof. Dr. Hidenari Inoue. Fax: (+81)-45-566-1551. E-mail: inoue@applc.keio.ac.jp Z. Naturforsch. **59b**, 310 – 318 (2004); received November 26, 2003 An iron(II) mixed-ligand complex with 1,10-phenanthroline (phen) and dipyrido[3,2-a:2',3'-c]phenazine (dppz), [Fe(phen)₂(dppz)]²⁺, has been synthesized. The DNA-binding properties of the mixed-ligand complex have been studied in terms of equilibrium binding constant, thermodynamic parameter, thermal denaturation as well as Pfeiffer effect upon binding to DNA. The spectrophotometric titration of [Fe(phen)₂(dppz)]²⁺ with calf thymus DNA (ct-DNA) has shown that the iron(II) mixed-ligand complex binds effectively to ct-DNA in an intercalation mode as indicated by remarkable hypochromicity (ca. 36%) and moderate bathochromic shift (8 nm) of the absorption spectra. This intercalative mode is supported by a significant increase ($\Delta T_{\rm m} = 21$ °C) in the melting temperature ($T_{\rm m}$) of ct-DNA at $R([{\rm complex}]/[{\rm ct-DNA}]) = 1.5$. The binding of [Fe(phen)₂(dppz)]²⁺ to ct-DNA is entropically driven as characterized by a positive enthalpy change and a large negative $T\Delta S$ term. An intense CD signal in the UV and visible region develops upon addition of ct-DNA to the racemate solution of [Fe(phen)₂(dppz)]²⁺. This has revealed that a shift in diastereomeric inversion equilibrium takes place in the solution to yield an excess of one enantiomer of the DNA-iron(II) complex (Pfeiffer effect). The striking resemblance of the CD spectral profiles to those of the corresponding Δ -enantiomer indicates that Δ -[Fe(phen)₂(dppz)]²⁺ is preferentially bound to ct-DNA. Key words: Iron(II), Mixed Ligand Complex, Phenanthroline, Dppz, DNA Binding