Synthesis and Structure of RhMg₃ and Ir₃Mg₁₃

Viktor Hlukhyy, Ute Ch. Rodewald, Rolf-Dieter Hoffmann, and Rainer Pöttgen

Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 8, 48149 Münster (Germany)

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. **59b**, 251 – 255 (2004); received December 20, 2003

Dedicated to Professor Evgen Ivanovych Gladyshevskii on the occasion of his 80th birthday

The binary transition metal magnesium compounds RhMg₃ and Ir₃Mg₁₃ have been synthesized from the elements in sealed niobium tubes and investigated on the basis of X-ray powder and single crystal data: Cu₃P type, $P6_3cm$, a = 790.5(4), c = 825.6(3) pm, wR2 = 0.0244, $344 F^2$ values, 27 variable parameters for RhMg₃, and R3c, a = 1607.0(2), c = 844.88(9) pm, wR2 = 0.0535, $656 F^2$ values, 29 variable parameters for Ir₃Mg₁₃. The rhodium atoms in RhMg₃ have coordination number 11. These polyhedra show an AB AB stacking sequence like in the hexagonal close-packed structure. The crystal chemical relation of the Cu₃P type structure of RhMg₃ with the aristotype Na₃As (IrAl₃) is discussed on the basis of a group-subgroup scheme. Ir₃Mg₁₃ crystallizes with a new complex structure type with coordination numbers of 11, 14, 15, 14, and 12 for the Ir, Mg1, Mg2, Mg3, and Mg4 atoms, respectively.

Key words: Magnesium, Crystal Structure, Solid State Synthesis