Calculated NMR Parameters (Chemical Shifts and Coupling Constants) of Cyclic C_4H_2 and C_4H_4 Molecules Containing Carbene Centers, and of Some of their Boron Analoga, Using Density Functional Theory (DFT)

Bernd Wrackmeyer

Anorganische Chemie II, Universität Bayreuth, D-95440 Bayreuth, Germany

Reprint requests to Prof. Dr. B. Wrackmeyer. E-mail: b.wrack@uni-bayreuth.de

Z. Naturforsch. **59b**, 37 – 43 (2004); received October 24, 2003

boranes (replacement of the carbene centers by BH fragments) were also calculated. The computation of NMR parameters such as chemical shifts δ^{13} C and δ^{11} B, and coupling constants $^1J(^{13}\text{C},^{1}\text{H})$, $^1J(^{11}\text{B},^{1}\text{H})$, $J(^{13}\text{C},^{13}\text{C})$ and $J(^{13}\text{C},^{11}\text{B})$ shows that these data can be used for the discussion of the bonding situation. The presence of inverted carbene centers is clearly indicated by the increased ^{13}C nuclear magnetic shielding. Scalar ^{13}C - ^{13}C spin-spin coupling involving carbene centers are frequently dominated by spin-dipole and spin-orbital interactions.

Singlet state structures of small, cyclic hydrocarbons which can result from the addition of molecular dicarbon (C_2) to ethyne ($HC \equiv CH$) or ethene ($H_2C = CH_2$) have been calculated ($B_3LYP/6_311 + G(d,p)$ level of theory), and were found to contain carbene centres. Some structures of analogous

Key words: Carbenes, Cyclic Hydrocarbons, Boranes, MO Calculations, NMR Parameters