A New Pyranoacridone Alkaloid from the Bark of *Medicosma subsessilis* (*Rutaceae*)

Nguyen Tuan Minh\(^a\), Sylvie Michel\(^b\), François Tillequin\(^a\), Marc Litaudon\(^b\), Thierry Sévenet\(^b\), and Marie-Christine Lallemand\(^a\)

\(^a\) Laboratoire de Pharmacognosie de l’Université René Descartes, U.M.R./C.N.R.S. N°8638, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l’Observatoire, F-75006 Paris, France

\(^b\) Institut de Chimie des Substances Naturelles du C.N.R.S., F-91190 Gif-sur-Yvette, France

Reprint requests to Prof. F. Tillequin. E-mail: tillequi@pharmacie.univ-paris5.fr

The alkaloids evolitrine, acronycidine, melicopine, melicopidine, normelicopine, normelicopidine, acronycine, noracronycine, 12-desmethylnoracronycine, (+)-*cis*-1,2-dihydroxy-1,2-dihydroacronycine, and (-)-*trans*-1,2-dihydroxy-1,2-dihydroacronycine were isolated from *Medicosma subsessilis* bark, together with the new 1-oxo-2-hydroxy-1,2-dihydro-12-desmethylnoracronycine. The structure of the latter compound was elucidated on the basis of spectral data and partial synthesis.

Key words: *Medicosma subsessilis*, Alkaloids, 1-Oxo-2-hydroxy-1,2-dihydro-12-desmethylacronycine

Introduction

According to the last revision published by Hartley, the genus *Medicosma* L. (*Rutaceae*) consists of some 22 species of trees and shrubs, endemic to eastern Australia, southern New Guinea, and New Caledonia [1]. Until now, only three of these species have been studied from a chemical point of view for their alkaloid contents. In both *Medicosma fareana* (F. Mueller) T. Hartley and *Medicosma leratii* (Guillaumin) T. Hartley (= *Melicope leratii* Guillaumin), furo[2,3-\(b\)]quinolines were accompanied by acridones and related oxidation products, such as fareanine [2, 3]. In contrast, acridones were not isolated from *Medicosma cunninghamii* (Hooker) Hooker f., which was only shown to contain furo[2,3-\(b\)]quinolines and the furo[2,3-\(b\)]pyrano[3,2-\(f\)]quinoline medicosmine [4, 5]. In a continuation of our studies on the Rutaceae from the Pacific area [6, 7], we describe here the isolation and structure elucidation of the alkaloids of the bark of *Medicosma subsessilis* T. Hartley.

Results and Discussion

Twelve alkaloids were isolated from the bark of *Medicosma subsessilis*. Two furo[2,3-\(b\)]quinolines were identified with evolitrine and acronycidine [8 – 10]. The UV spectra of the ten other compounds displayed typical absorptions associated with the acridone chromophore [11, 12]. These alkaloids included the simple acridones melicopine, melicopidine, normelicopine, and normelicopidine, and the angular pyranoacridones acronycine, noracronycine, 12-desmethylnoracronycine, (+)-*cis*-1,2-dihydroxy-1,2-dihydroacronycine, and (-)-*trans*-1,2-dihydroxy-1,2-dihydroacronycine were isolated from *Medicosma subsessilis* bark, together with the new 1-oxo-2-hydroxy-1,2-dihydro-12-desmethylnoracronycine. The structure of the latter compound was elucidated on the basis of spectral data and partial synthesis.

1–Oxo–2–hydroxy–1,2–dihydro–12–desmethylnor–acronycine (1) was obtained as a yellow amorphous product. The empirical formula was determined by accurate mass measurement as C\(_{18}\)H\(_{13}\)NO\(_5\). The UV spectrum recorded in MeOH showed absorption maxima attributable to an acridone chromophore [11]. The IR spectrum showed characteristic bands accounting for the acridone carbonyl and for a second conjugated carbonyl group, at 1610 and 1652 cm\(^{-1}\), respectively. In the aromatic region, the \(^1\)H NMR
spectrum displayed the characteristic set of four coupled signals associated with the unsubstituted A ring of a 9-acridone, whereas a 1H singlet indicated the presence of three substituents on the C ring. Two downfield resonances at δ 12.88 and 15.43 were typical for an acridone NH and a hydroxyl group strongly bonded to the acridone carbonyl, respectively. At higher field, signals at δ 6.19 (1H, d, $J = 5$ Hz, D$_2$O exch.), 4.27 (1H, d, $J = 5$ Hz), 1.47 (3H, s), and 1.33 (3H, s) accounted for a fused 2,2-dimethyl-3-hydroxy-4-oxo-3,4-dihydro-2H-pyrane subunit. This statement is in full agreement with a series of signals observed at 20.4, 26.1, 75.7, 84.7, and 194.8 ppm in the 13C NMR spectrum [15, 16]. The observation of a strong NOESY correlation between the signals of H-11 at δ 7.88 and NH-12 and the lack of correlation between NH-12 and the singlet at δ 6.10 strongly suggested an angular fusion of the dimethylpyran ring onto the acridone tricyclic system. In order to confirm this hypothesis, the synthesis of 1-oxo-2-hydroxy-1,2-dihydro-12-desmethylnoracronycine was achieved by oxidation of the readily available 3,12-dihydro-3,3-dimethyl-7H-pyrano[2,3-c]acridin-7-one (2) [17] with potassium permanganate in aqueous acetone [15, 16]. The synthetic product obtained was identical in all respects with the new natural alkaloid, whose structure was consequently established as 1. Despite the presence of a chiral center at C-2, natural 1-oxo-2-hydroxy-1,2-dihydro-12-desmethylnoracronycine (1) has been isolated as a racemate. The equilibrium of 1 with the tautomeric achiral 1,2-dihydroxy-12-desmethylnoracronycine form most probably accounts for this lack of optical rotatory properties.

From a chemotaxonomic point of view, it is interesting to note that the alkaloids isolated from Medicosma subsessilis include common furo[2,3-b]quinolines and acridones, together with six different pyrano[2,3-c]acridin-7-ones. Alkaloids deriving from the latter ba-

The optical rotation was measured on a Perkin-Elmer 241 polarimeter. Mass spectra were recorded with a Nermag R-10-10C spectrometer, using electron impact ionization (70 eV) technique. UV spectra (λ_{max} in nm) were recorded in spectroscopic grade EtOH on a Beckman Model 34 spectrophotometer. IR spectra (ν_{max} in cm$^{-1}$) were obtained from potassium bromide pellets on a Nicolet 510 FT instrument. 1H NMR (δ [ppm], J [Hz]) and 13C NMR spectra were recorded at 400 MHz and 100 MHz respectively, using a Bruker AVANCE-400 spectrometer. Multi-impusional 2D NMR experiments (1H-1H COSY, 1H-1H NOESY, 13C- 1H HMOC, and 13C-1H HMBC) were performed using standard Bruker microprograms. Column chromatographies were carried out with silica gel 20 – 45 µm. Flash column chromatographies were conducted using silica gel 60 Merck (35 – 70 µm) with an overpressure of 300 mbar [21].

Plant material

Bark of Medicosma subsessilis T. Hartley was collected in the Vallée de la Nodela (New Caledonia), on 30 October 1997. A voucher sample (LIT 372) is kept in the herbarium of the Centre IRD of Nouméa, New Caledonia.

Extraction and isolation

Dried, pulverized bark of Medicosma subsessilis (1 kg) was extracted successively with Et$_2$O (4 × 1 l) and MeOH (2 × 1 l) at room temperature. The solvents were removed under reduced pressure to give crude Et$_2$O and MeOH extracts (8.5 g and 1.2 g, respectively). The Et$_2$O extract (1.5 g) was subjected to flash column chromatography on silica gel, using a CH$_2$Cl$_2$-MeOH gradient of increasing polarity to yield 6 fractions. Further column chromatographies on silica gel 20 – 45 µm, performed on fractions 4 and 5 (eluted with CH$_2$Cl$_2$-MeOH 95:5 v/v) successively gave evolutrine (100 mg), acronycinide (7 mg), normelicopine (5 mg), normelicopidine (7 mg), melicopine (30 mg), melicopidine (35 mg), noracronycine (32 mg), acronycine (200 mg), and 12-desmethylacronycine (120 mg). Similarly, flash chromatography performed on the MeOH extract (0.3 g), followed by column chromatogra-
phies on silica gel 20–45 μm, successively afforded (+)-cis-1,2-dihydroxy-1,2-dihydroacronycine (27 mg), (-)-trans-1,2-dihydroxy-1,2-dihydroacronycine (34 mg) and 1-oxo-2-hydroxy-1,2-dihydro-12-desmethylnoracronycine (3.5 mg).

Spectroscopic data

1-Oxo-2-hydroxy-1,2-dihydro-12-desmethylnoracronycine (1), UV (EtOH): λ_max (log ε) = 221 (4.98), 255 (4.99), 383 nm (4.04). – IR (KBr): ν = 3444, 2923, 2854, 1652, 1610, 1549, 1464, 1171, 1089, 1054, 829 cm⁻¹. – ¹H-NMR (DMSO-d₆, 400 MHz): δ = 1.33 (s, 3H, CH₃-3), 1.47 (s, 3H, CH₃-3), 4.27 (d, J = 5 Hz, 1H, H-5), 6.10 (s, 1H, H-5), 6.19 (d, J = 5 Hz, 1H, D₂O excl., OH-2), 7.45 (t, J = 8 Hz, 1H, H-9), 7.85 (t, J = 8 Hz, 1H, H-10), 7.88 (d, J = 8 Hz, 1H, H-11), 8.23 (d, J = 5 Hz, 1H, D₂O excl., OH-12), 15.43 (s, 1H, D₂O excl., OH-6). – 13C-NMR (DMSO-d₆, 100 MHz): δ = 20.4 (CH₃-3), 26.1 (CH₃-3), 75.7 (C-2), 84.7 (C-3), 97.1 (C-5), 97.5 (C-12b), 104.3 (C-6a), 119.9 (C-11), 121.2 (C-7a), 128.4 (C-9), 125.9 (C-8), 135.7 (C-10), 140.4 (C-11a), 144.4 (C-12a), 167.6 (C-4a), 171.1 (C-6), 181.1 (C-7), 194.8 (C-1). – MS (EI, 70 eV): m/z 325 [M⁺], 310, 296, 281, 267, 254, 238, 226, 211, 197, 182, 169. – HR-EIMS found: 325.0947 (calcd. for [C₁₉H₁₅NO₅]⁺, 325.0950).

Synthesis

Permanganate oxidation of 3,12-dihydro-3,3-dimethyl-7H-pyrano[2,3-c]acridin-7-one (2): A suspension of powdered KMnO₄ (0.096 g, 0.6 mmol) in H₂O (2 ml) was added dropwise within 30 mn to a solution of 2 (0.030 g, 0.1 mmol) in acetonitrile (4 ml). The reaction mixture was stirred for 15 h at 20 °C and extracted with 2-butanol (3 × 10 ml). The organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Flash chromatography over silica gel 35–70 (solvent, CH₂Cl₂-MeOH 98:2 v/v) gave 1-Oxo-2-hydroxy-1,2-dihydro-12-desmethylnoracronycine (1) (0.010 g, 31%), as a yellow amorphous powder, identical with the natural product (TLC, IR, MS, ¹H and ¹³C NMR).