Crystal Structure of Eu₂PdSi₃ U. Ch. Rodewalda, R.-D. Hoffmanna, R. Pöttgena, and E. V. Sampathkumaranb - ^a Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 8, D-48149 Münster, Germany - b Department of Condensed Matter Physics & Materials Science, Tata Institute of Fundamental Research, Mumbai – 400 005, India Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de Z. Naturforsch. **58b**, 971 – 974 (2003); received August 19, 2003 Single crystals of Eu_2PdSi_3 were obtained from an arc-melted sample that was further annealed at 1020~K for seven days in a silica tube. The structure of Eu_2PdSi_3 was refined from single crystal X-ray diffractometer data: P6/mmm, a=831.88(12), c=435.88(9) pm, wR2=0.1175, $265~F^2$ values, and 13 variable parameters. It crystallizes with the U_2RuSi_3 structure, a superstructure of the AlB $_2$ type. The palladium and silicon atoms form a planar two-dimensional [PdSi $_3$] network. The two crystallographically different europium atoms have hexagonal prismatic coordinations $Eu1Si_12$ and $Eu2Pd_4Si_8$. The Pd–Si and Si–Si distances within the [PdSi $_3$] network are 244 and 236 pm, respectively. Key words: Silicide, Crystal Structure, Solid State Synthesis #### Introduction The AlB₂ structure type allows a variety of different colorings on the boron network. Assuming a given REX_2 (RE = rare earth element; X = element of the $3^{\rm rd}$, $4^{\rm th}$ or $5^{\rm th}$ main group) compound, it is sometimes possible to substitute some of the X atoms by a T atom (T = transition metal) resulting in ternary intermetallic RETX or RE_2TX_3 compounds. The structures of these compounds are ordered substitution variants of the aristotype AlB₂ and their space groups derive from P6/mmm by symmetry reduction. In a recent review article [1] we discussed 46 structure types which belong to this family of compounds. The space group relations have been discussed according to the Bärnighausen formalism [2, 3]. In many cases, the symmetry reduction leads to two or more crystallographically independent rare earth sites, leading to interesting magnetic properties. This is also the case for the structure types U_2RuSi_3 and Ce_2CoSi_3 (P6/mmm) [4–6], Er_2RhSi_3 ($P6_3/mmc$) [7,8], $Ba_4Li_2Si_6$ (Fddd) [9], and $Ca_4Ag_2Si_6$ (Fmmm) [10] which all have two uranium (Er, Ba, Ca) sites. Although the four structures have the same composition, they exhibit a different puckering and packing of the [TX_3] networks. So far it is not possible to predict which of the four structure types a given RE_2TX_3 compound adopts. The superstructure reflections resulting from the *klassengleiche* symmetry reductions are all very weak and can easily be overlooked in an X-ray powder pattern. Only precise single crystal X-ray data can help to unambiguously determine the correct superstructure. Also the silicide Eu₂PdSi₃ [11-13] belongs to this family of AlB₂ superstructures. So far Eu₂PdSi₃ has only been characterized on the basis of X-ray powder data. Herein we report on the structure refinement based on single crystal diffractometer data. ## **Experimental Section** Synthesis Starting materials for the preparation of Eu_2PdSi_3 were europium ingots, palladium powder, and silicon pieces. A polycrystalline Eu_2PdSi_3 sample was obtained by arcmelting of the elements under purified argon as described previously [14]. An excess of 5% europium was used to compensate the loss during the arc-melting process. The arcmolten button was subsequently sealed in an evacuated silica ampoule and annealed at 1020 K for 7 d. Compact pieces of Eu_2PdSi_3 are light gray with metallic luster. The sample is stable in moist air. No decomposition was observed after several months. X-ray film data and structure refinement Irregularly shaped single crystals were isolated from the annealed sample by mechanical fragmentation. They were Table 1. Crystal data and structure refinement for Eu₂PdSi₃. | ture remiement for Eugrasia | |---| | Eu ₂ PdSi ₃ | | 494.59 g/mol | | a = 831.88(12) pm | | c = 435.88(9) pm | | $V = 0.2612 \text{ nm}^3$ | | P6/mmm (No. 191) | | 6.29 g/cm ³ | | $30 \times 40 \times 45 \ \mu \text{m}^3$ | | 1.27 | | 27.6 mm^{-1} | | 4° to 35° | | $-11 \le h \le 13$, | | $-13 \le k \le 12, -6 \le l \le 7$ | | 3834 | | $265 (R_{\text{int}} = 0.0895)$ | | $246 (R_{\text{sigma}} = 0.0389)$ | | 265 / 13 | | 0.882 | | R1 = 0.0316 | | wR2 = 0.1127 | | R1 = 0.0354 | | wR2 = 0.1175 | | 0.0004(11) | | $2.29 \text{ and } -1.93 \text{ e/Å}^3$ | | | Fig. 1. Reconstructed reciprocal hhl layer of Eu₂PdSi₃. Superstructure reflections are those with h = 2n + 1. first examined on a Buerger precession camera in order to establish both symmetry and suitability for intensity data collection. Single crystal intensity data were collected at room temperature by use of a Stoe IPDS–II diffractometer with graphite monochromatized Mo- K_{α} radiation (71.073 pm) at a detector distance of 60 mm, an exposure time of 30 min, Table 2. Atomic coordinates and anisotropic displacement parameters (pm²) for Eu₂PdSi₃. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor. $U_{13} = U_{23} = 0$. | Atom | Wyckot | | у | Z | U ₁₁ | U ₂₂ | U ₃₃ | U ₁₂ | U _{eq} | |------|------------|----------|--------------|-----|-----------------|-----------------|-----------------|-----------------|-----------------| | | 1 | ш | | | | | | | | | Eu1 | 1a | 0 | 0 | 0 | 80(4) | U_{11} | 92(5) | 40(2) | 84(3) | | Eu2 | 3f | 1/2 | 0 | 0 | 89(4) | 106(4) | 109(5) | 53(2) | 100(3) | | Pd | 2d | 1/3 | 2/3 | 1/2 | 68(4) | U_{11} | 120(5) | 34(2) | 85(3) | | Si | 6 <i>m</i> | 0.1638(2 |) 2 <i>x</i> | 1/2 | 86(11) | 73(12) | 183(18) | 37(6) | 116(7) | Table 3. Interatomic distances (pm), calculated with the single crystal lattice parameters of Eu₂PdSi₃. All distances within the first coordination sphere are listed (standard deviations in parentheses). | Eu1: | 12 | Si | 321.2(2) | Pd: | 3 | Si | 244.3(3) | |------|----|-----|-----------|-----|---|-----|-----------| | | 6 | Eu2 | 415.94(6) | | 6 | Eu2 | 324.30(4) | | | 2 | Eu1 | 435.88(9) | Si: | 2 | Si | 236.0(3) | | Eu2: | 4 | Pd | 324.30(4) | | 1 | Pd | 244.3(3) | | | 8 | Si | 325.9(1) | | 2 | Eu1 | 321.2(2) | | | 4 | Eu2 | 415.94(6) | | 4 | Eu2 | 325.9(1) | | | 2 | Eu1 | 415.94(6) | | | | | | | 2 | Eu2 | 435.88(9) | | | | | Fig. 2. Projection of the Eu₂PdSi₃ structure onto the *ab* plane. Large gray, black filled, and medium open circles represent europium, palladium, and silicon, respectively. The two-dimensional [PdSi₃] network at z = 1/2 is emphasized. Some relevant interatomic distances are indicated in units of pm. and an omega range from 0 to $180^{\circ}(\Delta\omega=1^{\circ})$. The integration parameters were A = 14.5, B = 5.0, and EMS = 0.02. A numerical absorption correction was applied to the data. All relevant details concerning the data collection are listed in Table 1. Careful analyses of the data set showed a pronounced AlB_2 type subcell and weak reflections doubling the a and b axes. The reciprocal layers hk0 and hk1 showed high Laue Fig. 3. Calculated powder patterns (Cu- $K_{\alpha 1}$ radiation) for the AlB₂ type subcell and the U₂RuSi₃ type superstructure of Eu₂PdSi₃. The other three diagrams are simulations for a possible Er₂RhSi₃, Ba₄Li₂Si₆, or Ca₄Ag₂Si₆ type superstructure for Eu₂PdSi₃. The unequivocal superstructure reflections for each superstructure model are marked by arrows. The observed powder pattern of ref. [11] is best matched by the calculation with the U₂RuSi₃ type. symmetry and no systematic extinctions, compatible with space groups P6/mmm, P6mm, P62m, and P6m2. The space group with the highest symmetry, P6/mmm was found to be correct during the structure refinements. As mentioned in the introduction, four different structure types are known for the composition RE_2TX_3 . We have therefore carefully analysed the reciprocal space. As is evident from the reconstructed hhl layer in Fig. 1, no doubling is observed for the c lattice parameter. Also no diffuse scattering is observed in this direction as well as in other directions, which would be relevant to a doubling of the c axis. The atomic positions of $\mathrm{Ce_2CoSi_3}$ [6] were taken as starting values and the structure was successfully refined using SHELXL-97 (full-matrix least-squares on F_o^2) [15] with anisotropic atomic displacement parameters for all sites. As a check for the correct composition, the occupancy parameters were refined in a separate series of least-squares cycles. All sites were fully occupied within two standard deviations. A final difference Fourier synthesis revealed no significant residual peaks (see Table 1). The positional parameters and interatomic distances are listed in Tables 2 and 3. Listings of the observed and calculated structure factors are available.* Although the refinement converged to quite low residuals for all reflections, we prefer to calculate separate residuals for the superstructure reflections [16], since the overall residual is strongly affected by the dominating subcell reflections. For a 1σ cutoff we got a residual of 0.0742 for 182 superstructure reflections accounting for 27% of the total scattered intensity. The 83 subcell reflections yield a R1 of 0.0174. ## Discussion A projection of the $\rm Eu_2PdSi_3$ structure is shown in Fig. 2. The palladium and silicon atoms build a two-dimensional [PdSi₃] network. Within these networks the silicon atoms build discrete $\rm Si_6$ rings and the palladium atoms have a trigonal-planar silicon coordination at Pd–Si distances of 244 pm, close to the sum of the covalent radii of 246 pm [17]. The structure contains two crystallographically independent europium sites which both have a hexagonal prismatic coordination, Eu1 by 12 silicon atoms and Eu2 by four palladium and eight silicon atoms. Such a two-dimensional network also occurs in $Ca_4Ag_2Si_6$ [10]. Electron counting in the calcium compound may be written as $(4Ca^{2+})^{8+}(2Ag^+)^{2+}[Si_6]^{10-}$. According to magnetic suscepti- ^{*}Details may be obtained from: Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), E-mail: crysdata@fiz-karlsruhe.de by quoting the Registry No. CSD-391246. bility measurements [11], the europium atoms in Eu₂PdSi₃ are divalent, leading to a formulation $(4Eu^{2+})^{8+}(2Pd^+)^{2+}[Si_6]^{10-}$ with a formal charge of +1 per palladium atom. The Si–Si distance within the 10π -electron Hückel arenes [Si₆]¹⁰⁻ is 236 pm, similar to those in Ba₄Li₂Si₆ [9] and Ca₄Ag₂Si₆ [10], and elemental silicon [18]. The ionic formula splitting is certainly only a first rough approximation. Besides the strong Si–Si bonding we have to consider also the strong covalent Pd–Si bonds within the network. The U_{33} displacement parameters of the palladium and silicon atoms are about two times larger than the U_{11} values. This might indicate a tendency for puckering of the [PdSi₃] network as it is realized in the Er_2RhSi_3 structure [7, 8]. The X-ray powder (see below) and single crystal data, however, give no indication for an enlargement of the unit cell along the c direction. A similar behavior was recently observed for the [CoSi₃] network in Ce_2CoSi_3 [6]. The displacements of the silicon atoms are much more pronounced in U_2RuSi_3 [4]. Here, the structure was even refined with a split position $x \, 2x \, z$ instead of $x \, 2x \, 1/2$. However, the X-ray powder and single crystal data and electron diffraction patterns gave also no hint for a unit cell enlargement. Finally we present calculated X-ray powder patterns (Cu- $K_{\alpha 1}$ radiation) [19] for the AlB₂ type subcell and the U₂RuSi₃ type superstructure of Eu₂PdSi₃ in Fig. 3. The other three diagrams in that Figure are simulations for a possible Er₂RhSi₃, Ba₄Li₂Si₆, or Ca₄Ag₂Si₆ type superstructure for Eu₂PdSi₃. From the calculated patterns it can be seen that the different superstructures can clearly be distinguished from high quality X-ray powder data. The superstructure model derived here from the single crystal data is in excellent agreement with the powder pattern reported in ref. [11]. #### Acknowledgements This work was financially supported by the Fonds der Chemischen Industrie and by the Deutsche Forschungsgemeinschaft. - R.-D. Hoffmann, R. Pöttgen, Z. Kristallogr. 216, 127 (2001). - [2] H. Bärnighausen, Commun. Math. Chem. 9, 139 (1980). - [3] H. Bärnighausen, U. Müller, Symmetriebeziehungen zwischen den Raumgruppen als Hilfsmittel zur straffen Darstellung von Strukturzusammenhängen in der Kristallchemie. Universität Karlsruhe und Universität-GH Kassel, Germany, 1996. - [4] R. Pöttgen, P. Gravereau, B. Darriet, B. Chevalier, E. Hickey, J. Etourneau, J. Mater. Chem. 4, 462 (1994). - [5] B. Chevalier, R. Pöttgen, B. Darriet, P. Gravereau, J. Etourneau, J. Alloys Compd. 233, 150 (1996). - [6] R. A. Gordon, C. J. Warren, M. G. Alexander, F. J. DiSalvo, R. Pöttgen, J. Alloys Compd. 248, 24 (1997). - [7] B. Chevalier, P. Lejay, J. Etourneau, P. Hagenmuller, Solid State Commun. 49, 753 (1984). - [8] R. E. Gladyshevskii, K. Cenzual, E. Parthé, J. Alloys Compd. 189, 221 (1992). - [9] H. G. von Schnering, U. Bolle, J. Curda, K. Peters, W. Carrillo-Cabrera, M. Somer, M. Schultheiss, U. Wedig, Angew. Chem. 108, 1062 (1996). - [10] R. Cardoso Gil, W. Carrillo-Cabrera, M. Schultheiss, K. Peters, H. G. von Schnering, Z. Anorg. Allg. Chem. 625, 285 (1999). - [11] R. Mallik, E. V. Sampathkumaran, M. Strecker, G. Wortmann, P. L. Paulose, J. Magn. Magn. Mater. 185, L135, (1998). - [12] S. Majumdar, R. Mallik, P.L. Paulose, E. V. Sampathkumaran, Physica B 259 – 261, 166 (1999). - [13] S. Majumdar, R. Mallik, E. V. Sampathkumaran, P. L. Paulose, K. V. Gopalakrishnan, Phys. Rev. B 59, 4244 (1999). - [14] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor Fachzeitschrift **43**, 133, (1999). - [15] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany (1997). - [16] R.-D. Hoffmann, RWERT, Program for the Calculation of Separate Residuals for Superstructure Reflections, University of Münster (1996). - [17] J. Emsley, The Elements, Oxford University Press, Oxford (1999). - [18] J. Donohue, The Structures of the Elements, Wiley, New York (1974). - [19] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 10, 73 (1977).