Synthesis of Cyclopropanoid Nucleoside Analogues Possessing a Flexible Side Chain

René Csuk and Anja Kern
Institut für Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
Reprint requests to Prof. Dr. R. Csuk. E-mail: csuk @chemie.uni-halle.de
Z. Naturforsch. 58b, 843-852 (2003); received June 5, 2003
A novel class of cyclopropanoic nucleoside analogues containing an hydroxyethyl residue instead of a hydroxymethyl side chain has been prepared in an easy sequence. These compounds showed weak antitumor activity. The resolution of the racemates on an analytical scale was performed by HPLC using chiral stationary phases.

Key words: Nucleoside Analogues, Cyclopropanes, HPLC

Introduction

An attractive strategy in the development of new antitumor and/or antiviral active compounds consists in the introduction of carbocyclic units into nucleosides [1]. This concept has successfully been used for the synthesis of numerous cyclobutane [2] and cyclopentane [3] analogues of nucleosides, the so-called carbocyclic nucleosides analogues among which the cyclopropanoid derivatives play a most prominent role [4-6]. Besides antitumor activity many of these cyclopropanoic compounds have been shown to be excellent inhibitors of various enzymes.

Results and Discussion

To obtain higher flexibility in the difluoro cyclopropanoid nucleoside analogues series the synthesis of compounds possessing a flexible chain chain was planned. During ongoing QSAR studies of antitumor active cyclopropanoid nucleoside analogues we became interested in the synthesis and biological evaluation of hydroxyethyl substituted derivatives.
The synthesis of cis as well as of trans configurated compounds (with respect to the relative configuration at the cyclopropane ring) started from well known (\pm)-ethyl 2-[2-(tetrahydro-2H-2-pyranyloxy)ethyl]-1cyclopropanoate (1) [6] as a racemic 1:1 mixture of the corresponding cis/trans diastereomers to afford after saponification the acids $\mathbf{2}$. The relative configuration of these comnpounds has been determined by NMR spectroscopy [6]. Whereas a Curtius degradation of 2
under different reaction conditions invariably afforded low yields of complex mixtures of stereomeric products that could not be separated by chromatography, its treatment with ethyl chloroformate in the presence of dry triethylamine followed by the reaction with ammonia at $-5{ }^{\circ} \mathrm{C}$ gave a mixture of the diastereomeric carboxamides cis- $\mathbf{3}$ and trans- $\mathbf{4}$ that were easily separated by chromatography. Hofmann degradation of (\pm)-3 using di(acetoxyiodo)-benzene/methanolic potassium hydroxide gave the corresponding methyl carbamate 5 that was conveniently hydrolysed to the amine $(\pm)-\mathbf{6}$ [7, 8].

In an analogous manner from 3 via the methyl carbamate $\mathbf{7}$ in good yields the amine $\mathbf{8}$ was obtained. To obtain heterocycles of the purine type, $(\pm)-6$ was treated with 5 -amino-4,6-dichloropyrimidine in the presence of n-butanol and triethylamine to yield 9 followed by the reaction with triethyl orthoformate/conc. hydrochloric acid $[(\pm)-10]$. Finally after treatment with ammonia at 50 bar at $76{ }^{\circ} \mathrm{C}$ in an autoclave, 97% of the adenine analogue $(\pm)-\mathbf{1 1}$ were obtained [5].
Similarly for the synthesis of the trans-configurated compounds, reaction of amine $\mathbf{8}$ with 5-amino-4,6dichloropyrimidine as described above gave $\mathbf{1 2}$ whose cyclization afforded the 6-chloro-purine (\pm)-13 and $\mathbf{1 4}$ as a by-product. Treatment of $(\pm) \mathbf{- 1 3}$ with ammonia in an autoclave finally afforded the adenine derivative $(\pm)-15$.

A thymine nucleoside analogue was synthesized in the cis-series starting from the amine $(\pm)-6$ that was allowed to react with in situ prepared (3-methoxy-2-

Scheme 1. Reactions and conditions a) NaOH ; b) $\mathrm{ClCO}_{2} \mathrm{Et} / \mathrm{NH}_{3}$; c) di(acetoxyiodo)benzene/ KOH ; d) $\mathrm{KOH} / \mathrm{MeOH}$; e) 5-amino-4,6-dichloro-pyrimidine, n $\mathrm{BuOH}, \mathrm{NEt}_{3}$; f) $\left.\mathrm{C}(\mathrm{COEt}){ }_{3} / \mathrm{HCl} ; \mathrm{g}\right) \mathrm{NH}_{3}$; h) 3-methoxy-2-methyl-acryloyl chloride/ AgOCN ; i) $\mathrm{H}_{2} \mathrm{SO}_{4}$; j) 3-ethoxyacryloyl chloride/AgOCN.
methyl-acryloyl)isocyanate [9] to afford (\pm)-16 followed by a ring closure reaction mediated by 2 N sulphuric acid to yield the thymine derivative (\pm)-17. Following this strategy the trans amine (\pm)-8 gave under the same conditions via $(\pm) \mathbf{- 1 8}$ the thymine derivative $(\pm)-19$. The uracil analogues were obtained by the reaction of the amines with in situ prepared (3-ethoxyacryloyl)isocyanate (to afford (\pm)-20 and $\mathbf{1 8}$, respectively) [9] followed by acid-mediated ring closure that gave the cis-configurated uracil analogue (\pm)-21 and trans $(\pm)-19$, respectively.

Preliminary biological screening of racemic 11, 15, 17, 19, 21 and 22 revealed weak antitumor activity for several of these compounds. Since it is well established that the biological activity of many nucleoside analogues resides only in one enantiomer [10], the analytical separation of the corresponding enantiomers was accomplished by HPLC using chiral stationary phases.

The chromatographic separation of the enantiomers of $(\pm) \mathbf{- 1 1},(\pm)-25,(\pm)-17,(\pm) \mathbf{- 1 9},(\pm)-21$ and $(\pm)-$

Table 1. HPLC conditions for the separation of the enantiomers.

Column	Chiralpak AD	Chiralcel OD
Flow	$0.5 \mathrm{ml} / \mathrm{min}$	$1.0 \mathrm{ml} / \mathrm{min}$
Pressure	$15.7-16.7 \mathrm{bar}$	25.5 bar
Detection	$\mathrm{UV} / \mathrm{vis}, \lambda=267$,	$\mathrm{UV} / \mathrm{vis}, \lambda=271$,
	$271,276 \mathrm{~nm}$	276 nm
Eluent	methanol	hexane $/ 2$-propanol
		$80: 20$
Temperature	$20^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$

22 was performed by HPLC on a Daicel Chiralcel OD column using a hexane/2-propanol mixture or on a Daicel Chiralpak AD column using methanol as the eluent. The better results for these compounds were obtained with the Chiralpak AD column. The results of these separations are summarized in Tables 1 and 2.

For compound (\pm) - $\mathbf{1 1}$ a semi-preparative separation using an analytical Chiralpak AD column was performed using approx. $5 \mathrm{mg} / 2 \mathrm{ml}$ of (\pm) - $\mathbf{1 1}$ per injection. Thus, sufficient enantiomerically pure material could be obtained; the CD-spectra of $(+)-\mathbf{1 1}$ and (- 11 are shown in Fig. 1 and are listed in Table 3.

Fig. 1. a) Typical chromatogram for the analytical separation of the enantiomers of $(\pm) \mathbf{- 1 1}$ by HPLC (Daicel, Chiralpak AD); b) CD-spectra of $(+) \mathbf{- 1 1}$ and $(-) \mathbf{- 1 1}$.

Table 2. HPLC separation of the enantiomers.

Compound	Column	$\mathrm{t}_{\mathrm{R}}(+)[\mathrm{min}]$	$\mathrm{t}_{\mathrm{R}}(-)[\mathrm{min}]$
$\mathbf{1 1}$	Chiralpak AD	8.75	11.39
$\mathbf{1 5}$	Chiralpak AD	13.71	24.99
$\mathbf{2 2}$	Chiralpak AD	12.72	28.27
$\mathbf{1 7}$	Chiralcel OD	61.49	96.27
$\mathbf{2 1}$	Chiralpak AD	18.29	77.33
$\mathbf{1 9}$	Chiralcel OD	134.88	155.44

Table 3. Representative optical data for (-)-11 and (+)-11.

Compound	$[\alpha]_{D}^{20}$	$\Delta \varepsilon$	ee
$(+) \mathbf{- 1 1}$	+6.1	$-0.14(226 \mathrm{~nm})$	$>99 \%$
$(-) \mathbf{- 1 1}$	-6.2	$+0.2(230 \mathrm{~nm})$	$>99 \%$

Presently the separation of all enantiomeric forms and their biological testing as well as a chemoenzymatic approach for the synthesis of the pure enantiomers is under investigation in our labs.

Experimental Section

General methods: Melting points are uncorrected (Leica hot stage microscope), optical rotations were obtained using a Perkin-Elmer 341 polarimeter (1 cm micro cell), NMR spectra (internal $\mathrm{Me}_{4} \mathrm{Si}$) were recorded using the Varian spectrometers Gemini 200 , Gemini 2000 or Unity 500 (δ given in ppm, J in Hz , internal $\mathrm{Me}_{4} \mathrm{Si}$ for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, C' correspond to the atoms of the heterocycle, C" correspond to the atoms of the tetrahydropyranyl fragment), IR spectra (film or KBr pellet) were measured on a PerkinElmer FT-IR spectrometer Spectrum 1000, MS spectra were taken on a Intectra GmbH AMD 402 (electron impact, 70 eV) or on a Finnigan MAT LCQ 7000 (electrospray, voltage 4.5 kV , under nitrogen) instrument; for elemental analysis a

Foss-Heraeus Vario EL instrument was used. TLC was performed on silica gel (Merck 5554, detection by treatment with a solution of 10% sulfuric acid, ammonium molybdate and cerium ${ }^{(\mathrm{IV})}$ sulfate followed by gentle heating or by UV/vis absorption); column chromatography was performed on silica gel 60 (FLUKA, $0.04-0.06 \mathrm{~mm}$). HPLC was performed on a Merck-Hitachi L6200A/L4000/D2500 instrument using either a Chiralcel OD (Daicel Chemical Industries, $4.6 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}$) or a Chiralpak AD (Daicel Chemical Industries, $4.6 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}$) column.
$(\pm)-(1 \quad R S, 2 R S)-c i s-2-[2-(T e t r a h y d r o-2 H-2-p y r a n y l o x y)-$ ethyll-1-cyclopropanecarboxylic acid (cis-(土)-2) and (\pm)-(1 RS, 2 SR)-trans-2-[2-(tetrahydro-2H-2-pyranyloxy)-ethyl]-1-cyclopropanecarboxylic acid (trans-(土)-2)

A solution of (\pm)-ethyl($1 R S, 2 R S$)-cis-2-[2-(tetrahydro2 H -2-pyranyloxy)ethyl]-1-cyclopropanecarboxylate (cis$(\pm)-1)$ and (\pm)-ethyl(1 RS, 2 SR)-trans-2-[2-(tetrahydro2 H -2-pyranyloxy)ethyl]-1-cyclopropanecarboxylate (trans$(\pm)-1)(9.65 \mathrm{~g}, 39.82 \mathrm{mmol})$ in ethanol (50 ml) was heated under reflux. To this mixture a solution of $\mathrm{NaOH}(3.02 \mathrm{~g}$, $75.51 \mathrm{mmol})$ in water (15 ml) was added dropwise over a period of 2 h and stirring was continued for 1 h . After cooling to room temperature the mixture was concentrated, water was added (20 ml) and the mixture was concentrated again. The yellowish residue was suspended in water (20 ml) and extracted with diethyl ether ($3 \times 50 \mathrm{ml}$). After adjusting the pH of the aqueous phase to 3 by the addition of HCl (10%), the mixture was extracted with diethyl ether (5 $\times 50 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4} and evaporated under reduced pressure to obtain 2 $(8.42 \mathrm{~g}, 99 \%)$ as a yellowish oil. - R_{F} (ethyl acetate/hexane 3:1), cis-2: 0.52 , trans-2: 0.44 . - IR (film): $v=2944 \mathrm{~s}$,
$2872 \mathrm{~m}, 1694 \mathrm{~s}, 1456 \mathrm{~m}, 1434 \mathrm{~m}, 1385 \mathrm{~m}, 1353 \mathrm{~m}, 1324 \mathrm{~m}$, $1261 \mathrm{~m}, 1228 \mathrm{~m}, 1201 \mathrm{~s}, 1185 \mathrm{~s}, 1137 \mathrm{~s}, 1120 \mathrm{~s}, 1077 \mathrm{~m}, 1034 \mathrm{~s}$ $\mathrm{cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.99(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 4.59-4.58(\mathrm{~m}, 1 \mathrm{H}, 2 "-\mathrm{H}), 3.87-3.64\left(\mathrm{~m}, 2 \mathrm{H}, 6 "-\mathrm{H}_{\mathrm{A}}\right.$, $\left.\mathrm{OCH}_{\mathrm{A}}\right), 3.53-3.35\left(\mathrm{~m}, 2 \mathrm{H}, 6 "-\mathrm{H}_{\mathrm{B}}, \mathrm{OCH}_{\mathrm{B}}\right), 1.90-1.37$ (m, $8 \mathrm{H}, 3 "-\mathrm{H}_{2}, 4 "-\mathrm{H}_{2}, 5 "-\mathrm{H}_{2}, \mathrm{CH}_{2}$-ethyl), 1.26-0.94 $\left(\mathrm{m}, 3 \mathrm{H}, 2-\mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right), 0.85-0.76\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right) .-$ ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): data for cis-2: $\delta=178.94$ (s, CO), 98.59 (d, C-2"), $66.50(t, C-6 "), 61.89\left(t, \mathrm{OCH}_{2}\right)$, 33.02 (t, CH2-ethyl), 30.49 (t, C-3"), 27.10 (t, C-5"), 25.32 (t, C-4"), 19.24 (d, C-1) , 17.69 (d, C-2), 13.81 (t, C-3); data for trans-2: $\delta=180.09$ (s, CO), 98.62 (d, C-2"), 66.90 (t, C-6"), 61.94 (t, OCH2), 33.02 (t, CH_{2}-ethyl), 30.49 (t, C-3"), 27.10 (t, C-5"), 25.32 (t, C-4"), 19.91 (d, C-1), 17.69 (d, C-2), $13.81(\mathrm{t}, \mathrm{C}-3) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=213$ (0.7), 196 (2.1), 168 (0.7), 156 (0.7), 141 (3.6), 129 (2.1), 113 (33.6), 101 (23.6), 95 (12.9), 85 (100.0). - HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}$: 214.12050; found: 214.12050. - Analysis for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}$ (214.26): calcd. C 61.66, H 8.47; found C 61.72, H 8.49.
(土)-(1 RS, 2 RS)-cis-2-[2-(Tetrahydro-2H-2-pyranyloxy)-ethyl]-1-cyclopropanecarboxamide $((\pm)-3)$ and $(\pm)-(1 R S$, 2 SR)-trans-2-[2-(tetrahydro-2H-2-pyranyloxy)ethyl]-1-cyclopropanecarboxamide ($(\pm)-4)$

To a stirred solution of $2(5.00 \mathrm{~g}, 23.34 \mathrm{mmol})$, triethylamine ($3.9 \mathrm{ml}, 28.06 \mathrm{mmol}$) in dry THF (100 ml) ethyl chloroformate ($2.7 \mathrm{ml}, 28.37 \mathrm{mmol}$) was added dropwise at $-5{ }^{\circ} \mathrm{C}$ and stirring was continued for 1 h at $-5^{\circ} \mathrm{C}$. A saturated solution of NH_{3} in THF (250 ml) was then added carefully at this temperature and stirring was pursued for 1 h at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature, stirred for an additional 2 h and filtered. The filtrate was concentrated and the residue was purified by column chromatography (silica gel, ethyl acetate/hexane 1:2 \rightarrow $2: 1)$ to obtain $3(2.01 \mathrm{~g}, 40 \%)$ and $4(2.03 \mathrm{~g}, 40 \%)$. - Data for (\pm)-3: white solid. - M. p. $103.6-104.8^{\circ} \mathrm{C} .-R_{F}$ (ethyl acetate/hexane $3: 1$) 0.21 . - IR (KBr): $v=3360 \mathrm{~s}, 3186 \mathrm{~m}$, $2941 \mathrm{~m}, ~ 2869 \mathrm{~m}, ~ 2359 \mathrm{w}, 1353 \mathrm{~m}, 1324 \mathrm{w}, 1301 \mathrm{~m}, 1260 \mathrm{w}$, $1201 \mathrm{~m}, 1183 \mathrm{w}, 1166 \mathrm{~m}, 1139 \mathrm{~m}, 1120 \mathrm{~m}, 1080 \mathrm{~m}, 1060 \mathrm{~m}$, $1036 \mathrm{~s} \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.57$ (s, $1 \mathrm{H}, \mathrm{NH}), 5.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.57(\mathrm{dd}, J=7.37,3.13 \mathrm{~Hz}$, $1 \mathrm{H}, 2 "-\mathrm{H}), 3.88-3.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{A}}\right), 3.79-3.74(\mathrm{~m}, 1 \mathrm{H}$, $\left.6 "-\mathrm{H}_{\mathrm{A}}\right), 3.50-3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{\mathrm{B}}, 6 "-\mathrm{H}_{\mathrm{B}}\right), 1.89-1.76(\mathrm{~m}$, $\left.4 \mathrm{H}, 4 "-\mathrm{H}_{2}, 3 "-\mathrm{H}_{2}\right), 1.72-1.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$-ethyl), $1.57-$ 1.48 (m, $4 \mathrm{H}, 1-\mathrm{H}, \mathrm{CH}_{\mathrm{B}}$-ethyl, $5 "-\mathrm{H}_{2}$), $1.37-1.24(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{H}), 1.00-0.92\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=175.23$ (s, CO), 99.89 (d, C-2"), 68.21 (t, C$6 "), 63.35$ (t, OCH 2), 31.67 (t, CH2-ethyl), 28.08 (t, C-3"), 26.37 (t, C-5"), 20.57 ($t, C-4 "), 20.02$ (d, C-1), 19.17 (d, C2), 12.62 (t, C-3). - MS (EI, 70 eV): $m / z(\%)=184$ (8.6), 142 (0.7), 128 (28.6), 113 (19.3), 112 (100.0). - HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3}: 213.13648$; found: 213.13648. - Analysis for
$\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3}$ (213.27): calcd. C 61.95, H 8.98, N 6.57; found C 61.85, H 9.02, N 6.63.

Data for $(\pm)-4$: white solid. - M. p. $77.1-77.7^{\circ} \mathrm{C} .-R_{F}$ (ethyl acetate/hexane 3:1) 0.16. - IR (KBr): $v=3406 \mathrm{brm}$, 3204w, 2943m, 2871w, 1661m, 1622m, 1456w, 1428w, $1380 w, 1353 w, 1324 w, 1284 w, 1201 w, 1184 w, 1136 m$, $1120 \mathrm{~m}, 1077 \mathrm{w}, 1030 \mathrm{~m} \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.54(\mathrm{dd}, J=4.32,4.32 \mathrm{~Hz}$, $1 \mathrm{H}, 2 "-\mathrm{H}), 3.84-3.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{\mathrm{A}}, 6 "-\mathrm{H}_{\mathrm{A}}\right), 3.48-3.39$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{\mathrm{B}}, 6 "-\mathrm{H}_{\mathrm{B}}\right), 1.81-1.73\left(\mathrm{~m}, 1 \mathrm{H}, 4 "-\mathrm{H}_{\mathrm{A}}\right), 1.69-$ $1.61\left(\mathrm{~m}, 1 \mathrm{H}, 3 "-\mathrm{H}_{\mathrm{A}}\right), 1.60-1.41\left(\mathrm{~m}, 6 \mathrm{H}, 4 "-\mathrm{H}_{\mathrm{B}}, 3 "-\mathrm{H}_{\mathrm{B}}\right.$, $\left.5 "-\mathrm{H}_{2}\right), \mathrm{CH}_{2}$-ethyl), $1.40-1.33(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.22$ (ddd, $J=$ $8.16,6.44,4.18 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 1.12$ (ddd, $J=10.95,4.31$, $2.19 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}$), 0.63 (ddd, $J=7.96,6.24,4.11 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}$) $-{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.13$ (s, CO), 99.98 (d, C-2"), $67.87\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 63.28$ (t, C-6"), 34.19 (t, CH2-ethyl), 31.62 (t, C-3"), 26.33 (t, C-5"), 22.21 (d, C1), 20.46 (d, C-2), 20.07 (t, C-4"), 15.07 (t, C-3). - MS (EI, $70 \mathrm{eV}): m / z(\%)=212(0.7), 184(4.3), 158(2.1), 141$ (6.4), 130 (23.6), 113 (58.6), 99 (28.6), 85 (100.0). - HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3}$: 213.13648; found: 213.13648. - Analysis for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3}$ (213.27): calcd. C 61.95, H 8.98, N 6.57; found C 61.83 , H 9.00, N 6.68.
(土)-Methyl(1 RS, 2 RS)-cis-2-[2-(tetrahydro-2H-2-pyranyl-oxy)ethyl]-1-cyclopropylcarbamate ((\pm)-5)

To a stirred solution of $\mathbf{3}(1.96 \mathrm{~g}, 9.19 \mathrm{mmol})$, $\mathrm{KOH}(1.35 \mathrm{~g}, 24.06 \mathrm{mmol})$ in methanol (60 ml), di(acetoxyiodo)benzene ($4.0 \mathrm{~g}, 12.42 \mathrm{mmol}$) was added in one portion at $5^{\circ} \mathrm{C}$. The solution was stirred at ice-bath temperature for 15 min followed by warming to room temperature for an additional 2 h . Methanol was removed under reduced pressure and the residue was partitioned between water (70 ml) and dichloromethane (30 ml). The aqueous layer was extracted with dichloromethane $(4 \times$ $30 \mathrm{ml})$. The combined organic phases were washed with water (50 ml) and brine $(50 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated and the residue was subjected to column chromatography (silica gel, hexane \rightarrow ethyl acetate/hexane $1: 2 \rightarrow 2: 1$) to afford $5(2.02 \mathrm{~g}, 90 \%)$ as a white solid. - M. p. $65.1-$ $66.3^{\circ} \mathrm{C}$. $-R_{F}$ (ethyl acetate/hexane $1: 1$) 0.54 . - IR (KBr): $v=3288 \mathrm{~m}, 2949 \mathrm{~m}, 2869 \mathrm{~m}, 1712 \mathrm{~s}, 1691 \mathrm{~s}, 1540 \mathrm{~m}, 1454 \mathrm{w}$, $1354 \mathrm{w}, 1324 \mathrm{w}, 1274 \mathrm{~m}, 1236 \mathrm{~m}, 1202 \mathrm{~m}, 1186 \mathrm{w}, 1137 \mathrm{~m}$, $1119 \mathrm{~m}, 1095 \mathrm{~m}, 1078 \mathrm{~m}, 1063 \mathrm{~m}, 1033 \mathrm{~m} \mathrm{~cm}{ }^{-1} .-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.79$ (s, $1 \mathrm{H}, \mathrm{NH}$), $4.60-4.57$ (m, $\left.1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 3.96-3.64\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right.$, ОСНА), $3.60(\mathrm{~s}$, $\left.\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.51-3.23\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), \mathrm{OCH}_{\mathrm{B}}\right), 2.51$ (ddd, $J=10.89,5.52,5.52 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 1.90-1.67(\mathrm{~m}$, $\left.2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 1.64-1.50\left(\mathrm{~m}, 6 \mathrm{H}, 3^{\prime \prime} \mathrm{H}_{\mathrm{B}}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 5^{\prime \prime}-\right.$ H_{2}), CH_{2}-ethyl), $0.96-0.77$ (m, $2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}$), $0.18-$ $0.35\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right) .-{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $158.12(\mathrm{~s}, \mathrm{CO}), 99.47\left(\mathrm{~d}, \mathrm{C}-2^{\prime \prime}\right), 67.30\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 61.77(\mathrm{t}$,

C－6 ${ }^{\prime \prime}$ ）， 51.78 （q， CH_{3} ）， 30.46 （t， CH_{2}－ethyl）， 28.65 （t，C－ $3^{\prime \prime}$ ）， 26.76 （d，C－1）， 25.26 （t，C－5＂）， 19.29 （t，C－4＂）， 15.32 （d，C－2）， 12.82 （t，C－3）；MS（EI， 70 eV ）： $\mathrm{m} / \mathrm{z}(\%)=159$ （19．3）， 142 （11．4）， 128 （7．1）， 114 （13．6）， 110 （2．9）， 100 （2．1）， 88 （7．9）， 85 （100．0）．－HRMS calcd．for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}$ ： 243．14705；found：243．14704．－Analysis for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}$ （243．30）：calcd．C 59．24，H 8．70，N 5．76；found C 59．17， H 8．89，N 5．87．
（土）－（1 RS， 2 RS）－cis－2－［2－（Tetrahydro－2H－2－pyranyl－oxy）－ ethyl］－1－cyclopropylamine $((\pm)-6)$

A solution of $5(3.36 \mathrm{~g}, 13.81 \mathrm{mmol}), \mathrm{KOH}(14.6 \mathrm{~g}$ ， 260.2 mmol ），methanol（ 100 ml ）and water（ 30 ml ）was heated under reflux for 48 h ．The solvents were removed under reduced pressure and water（ 50 ml ）was added．The aqueous layer was extracted with dichloromethane $(5 \times$ $50 \mathrm{ml})$ ．The combined organic phases were washed with brine（ 50 ml ），dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to obtain $6(2.12 \mathrm{~g}, 83 \%)$ as a colorless oil．$-R_{F}$（ethyl ac－ etate／hexane 1：1）0．05．－IR（film）：$v=3375 \mathrm{w}, 3068 \mathrm{w}, 2942 \mathrm{~s}$ ， $2870 \mathrm{~m}, 1576 \mathrm{~m}, 1442 \mathrm{~m}, 1384 \mathrm{~m}, 1352 \mathrm{~m}, 1323 \mathrm{~m}, 1284 \mathrm{~m}$ ， $1261 \mathrm{~m}, ~ 1201 \mathrm{~m}, 1184 \mathrm{~m}, 1164 \mathrm{~m}, 1136 \mathrm{~s}, 1119 \mathrm{~s}, 1076 \mathrm{~m}$ ， $1033 \mathrm{~s} \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=4.58-$ $4.57(\mathrm{~m}, 1 \mathrm{H}, 2 "-\mathrm{H}), 3.87-3.74\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, \mathrm{OCH}_{\mathrm{A}}\right)$ ， $3.47-3.39\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, \mathrm{OCH}_{\mathrm{B}}\right), 2.31(\mathrm{ddd}, J=13.33$ ， $6.10,5.03 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 1.81-1.65\left(\mathrm{~m}, 4 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{2}, 4^{\prime \prime}-\right.$ $\left.\mathrm{H}_{2}\right), 1.58-1.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$－ethyl， $\left.5^{\prime \prime}-\mathrm{H}_{2}\right), 0.70-0.59(\mathrm{~m}$ ， $2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}$ ），-0.06 （ddd，$J=7.62,3.42,3.42 \mathrm{~Hz}, 1 \mathrm{H}$ ， $\left.3-\mathrm{H}_{\mathrm{B}}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=98.61$（d，C－ $\left.2^{\prime \prime}\right), 67.69\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 61.97\left(\mathrm{t}, \mathrm{C}-6^{\prime \prime}\right), 30.59\left(\mathrm{t}, \mathrm{CH}_{2}\right.$－ethyl）， 27.74 （ $\mathrm{t}, \mathrm{C}-3^{\prime \prime}$ ）， 27.11 （d，C－1）， 25.36 （ $\mathrm{t}, \mathrm{C}-5^{\prime \prime}$ ）， 19.41 （ t ， C－4 ${ }^{\prime \prime}$ ）， 14.96 （d，C－2）， 13.00 （t，C－3）；MS（EI， 70 eV ）：m／z $(\%)=186(1.4), 168(0,7), 154(1.4), 140(3.6), 126$（3．6）， 112 （4．3）， 101 （16．4）， 100 （32．1）， 85 （100．0）．－HRMS calcd． for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}$ ：185．14157；found：185．14158．－Analysis for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}$（185．26）：calcd．C 64．83，H 10．34，N 7．56； found C 64．69，H 10．18，N 7．31．
（土）－Methyl（1 RS， 2 SR）－trans－2－［2－（tetrahydro－2H－2－pyr－ anyloxy）ethyl］－1－cyclopropylcarbamate（ (\pm)－7）

Following the procedure given for the prepara－ tion of compound 5 using $4(5.23 \mathrm{~g}, 24.52 \mathrm{mmol})$ ， $\mathrm{KOH}(3.45 \mathrm{~g}, 61.49 \mathrm{mmol})$ ，methanol $(75 \mathrm{ml})$ and bis（acetoxy）iodobenzene $(8.10 \mathrm{~g}, 25.15 \mathrm{mmol}) 7$（ 5.67 g ， 95% ）was obtained after purification by column chromatog－ raphy（silica gel，hexane \rightarrow ethyl acetate／hexane $1: 2 \rightarrow 2: 1$ ） as a colorless oil．－R_{F}（ethyl acetate／hexane 1：1）0．54．－IR （film）：$v=3323 \mathrm{~m}, 2944 \mathrm{~m}, 2869 \mathrm{~m}, 1708 \mathrm{~s}, 1527 \mathrm{~m}, 1455 \mathrm{~m}$ ， $1354 \mathrm{~m}, 1264 \mathrm{~m}, 1217 \mathrm{~m}, 1201 \mathrm{~m}, 1136 \mathrm{~m}, 1119 \mathrm{~m}, 1076 \mathrm{~m}$ ， $1064 \mathrm{~m}, 1032 \mathrm{~s} \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=$ 4.87 （ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ ）， $4.57-4.54\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 3.86-3.76(\mathrm{~m}$ ， $\left.\left.2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), \mathrm{OCH}_{\mathrm{A}}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.50-3.44(\mathrm{~m}$ ，
$\left.2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, \mathrm{OCH}_{\mathrm{B}}\right), 2.38-2.50(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 1.81-1.74$ $\left(\mathrm{m}, 1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 1.71-1.63\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 1.58-1.42$ （m， $\left.6 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 5^{\prime \prime}-\mathrm{H}_{2}\right), \mathrm{CH}_{2}$－ethyl）， $0.95-0.87(\mathrm{~m}$ ， $1 \mathrm{H}, 2-\mathrm{H}), 0.64\left(\mathrm{ddd}, J=9.23,4.54,4.54 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right)$ ， $0.57-0.52\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right) .-{ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）： $\delta=157.69(\mathrm{~s}, \mathrm{CO}), 98.94\left(\mathrm{~d}, \mathrm{C}-2^{\prime \prime}\right), 66.64\left(\mathrm{t}, \mathrm{OCH}_{2}\right)$ ， 62.31 （t，C－6＇$), 51.94\left(\mathrm{q}, \mathrm{CH}_{3}\right), 32.37$（ $\mathrm{t}, \mathrm{CH}_{2}$－ethyl）， 30.63 （t，C－3＂）， 29.34 （d，C－1）， 25.33 （t，C－5＂）， 19.53 （t， C－4＇）， 17.71 （d，C－2）， 13.47 （t，C－3）．－MS（EI， 70 eV ）： $m / z(\%)=242(5.7), 212(2.1), 184(2.1), 159$（18．6）， 142 （3．6）， 128 （8．6）， 114 （20．7）， 110 （2．9）， 101 （2．9）， 88 （8．6）， 85 （100．0）．－HRMS calcd．for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}: 243.14706$ ；found： 243．14706．－Analysis for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}$（243．30）：calcd． C 59．24，H 8．70，N 5．76；found C 58．98，H 8．70，N 5．89．
（土）－（1 RS， 2 SR）－trans－2－［2－（Tetrahydro－2H－2－pyranyl－oxy）－ ethyl］－1－cyclopropylamine $((\pm)-8)$

According to the preparation of 6 from $7(2.00 \mathrm{~g}$ ， $8.22 \mathrm{mmol}), \mathrm{KOH}(8.72 \mathrm{~g}, 155.41 \mathrm{mmol})$ ，methanol（ 40 ml ） and water $(10 \mathrm{ml}) \mathbf{8}(1.41 \mathrm{~g}, 93 \%)$ was obtained as a col－ orless oil．$-R_{F}$（ethyl acetate／hexane 1：1）0．05．－IR（film）： $v=3361 \mathrm{w}, 3071 \mathrm{w}, 2941 \mathrm{~s}, 2869 \mathrm{~m}, 2360 \mathrm{w}, 1578 \mathrm{w}, 1454 \mathrm{~m}$ ， $1353 \mathrm{~m}, 1323 \mathrm{w}, 1261 \mathrm{w}, 1201 \mathrm{~m}, 1184 \mathrm{w}, 1165 \mathrm{~m}, 1136 \mathrm{~m}$ ， $1120 \mathrm{~m}, 1077 \mathrm{~m}, 1033 \mathrm{~s} \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）： $\delta=4.53-4.48\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 3.85-3.68\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right.$ ， $\left.\mathrm{OCH}_{\mathrm{A}}\right), 3.47-3.34\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, \mathrm{OCH}_{\mathrm{B}}\right), 2.02(\mathrm{ddd}, J=$ $6.78,3.37,3.37 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 1.80-1.58\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right.$ ， $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 1.55-1.29\left(\mathrm{~m}, 6 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 5^{\prime \prime}-\mathrm{H}_{2}, \mathrm{CH}_{2}-\right.$ ethyl）， $0.74-0.67$（m，1 H，2－H）， 0.42 （ddd，$J=10.98,4.88$ ， $2.78 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}$ ）， 0.24 （ddd，$J=7.18,4.74,4.74 \mathrm{~Hz}, 1 \mathrm{H}$ ， $\left.3-\mathrm{H}_{\mathrm{B}}\right) .-{ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=98.81(\mathrm{~d}, \mathrm{C}-$ $\left.2^{\prime \prime}\right), 67.06\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 62.14\left(\mathrm{t}, \mathrm{C}-6^{\prime \prime}\right), 32.62\left(\mathrm{t}, \mathrm{CH}_{2}\right.$－ethyl）， 30.71 （t，C－3＂）， 30.57 （d，C－1）， 25.30 （t，C－5 ${ }^{\prime \prime}$ ）， 19.35 （t，C－ $4^{\prime \prime}$ ）， 18.45 （d，C－2）， 14.27 （t，C－3）．－MS（EI， 70 eV ）：m／z $(\%)=184(1.4), 149(0.7), 126(1.4), 112(0,7), 101(2.9)$ ， 100 （19．3）， 85 （100．0）．－HRMS calcd．for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}$ ： 185．14157；found：185．14157．－Analysis for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}$ （185．26）：calcd．C 64．83，H 10．34，N 7．56；found C 64．78， H 10．54，N 7.69.
（土）－4N－\｛（1 RS， 2 RS）－cis－2－［2－（Tetrahydro－2H－2－pyranyl－ oxy）ethyl］cyclopropyl\}-6-chloro-4,5-pyrimidine-diamine （（土）－9）

A suspension of $6(2.0 \mathrm{~g}, 10.8 \mathrm{mmol})$ ，triethyl－ amine（ 25 ml ），5－amino－4，6－dichloro－pyrimidine（ 3.55 g ， $21.65 \mathrm{mmol})$ in n－butanol（ 50 ml ）was heated under re－ flux for 24 h ．After cooling to room temperature the sol－ vent was removed under reduced pressure and the remain－ ing oil subjected to column chromatography（silica gel， ethyl acetate／hexane $1: 1 \rightarrow 2: 1$ ）to afford $9(3.15 \mathrm{~g}, 93 \%)$ as a yellowish oil．$-R_{F}$（ethyl acetate／hexane 3：1）0．5．－ UV／vis（methanol）：$\lambda_{\text {max }}(\lg \varepsilon)=302 \mathrm{~nm}$（4．28）．－IR（film）：
$v=3354 \mathrm{~s}, 2942 \mathrm{~s}, 2870 \mathrm{~m}, 1733 \mathrm{~m}, 1644 \mathrm{~m}, 1574 \mathrm{~s}, 1495 \mathrm{~s}$, $1454 \mathrm{~s}, 1418 \mathrm{~s}, 1358 \mathrm{~s}, 1244 \mathrm{~m}, 1202 \mathrm{~m}, 1184 \mathrm{~m}, 1119 \mathrm{~s}, 1074 \mathrm{~s}$, $1032 \mathrm{~s} \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07(\mathrm{~d}$, $\left.J=7.81 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.62(\mathrm{~s}, 1 \mathrm{H}$, NH), $4.52\left(\mathrm{dd}, J=6.64,2.34 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 3.96-3.80(\mathrm{~m}$, $\left.2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, \mathrm{OCH}_{\mathrm{A}}\right), 3.61-3.46\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, \mathrm{OCH}_{\mathrm{B}}\right)$, 2.77 (ddd, $J=9.27,4.30,3.52 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), $1.98-1.47$ (m, $8 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{2}$), $4^{\prime \prime}-\mathrm{H}_{2}, 5^{\prime \prime}-\mathrm{H}_{2}, \mathrm{CH}_{2}$-ethyl), $1.11-1.05(\mathrm{~m}$, $\left.2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right), 0.23-0.20\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right) .-{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.30$ (s, C-6'), 148.97 (d, C2^{\prime}), 141.01 ($\mathrm{s}, \mathrm{C}-4^{\prime}$), 122.74 ($\mathrm{s}, \mathrm{C}-5^{\prime}$), 101.56 (d, C-2"), $69.16\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 64.38\left(\mathrm{t}, \mathrm{C}-6^{\prime \prime}\right), 30.85\left(\mathrm{t}, \mathrm{CH}_{2}\right.$-ethyl), 29.11 (t, C-3"), 27.65 (d, C-1), 25.10 (t, C-5"), 20.68 (t, C-4"), 15.83 (d, C-2), 13.27 (t, C-3). - MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=$ 312 (9.3), 239 (6.4), 227 (25.0), 211 (21.4), 201 (15.7), 183 (15.0), 156 (27.7), 144 (15.7), 130 (5.7), 101 (5.7), 85 (100.0). - HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2}: 312.13529$; found: 312.13529. - Analysis for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2}$ (312.80): calcd. C 53.76, H 6.77, Cl 11.33, N 17.91; found C 53.49, H 6.86; Cl 11.56, N 17.64.
(土)-2-[(1 RS, 2 RS)-cis-2-(6-Chloro-9H-9-purinyl)cyclo-propyl]-1-ethanol $((\pm)$-10)

A suspension of $9(2.38 \mathrm{~g}, 7.61 \mathrm{mmol})$ in triethyl orthoformate ($18.0 \mathrm{~g}, 121.46 \mathrm{mmol}$) and hydrochloric acid (36%, $0.9 \mathrm{~g}, 9.0 \mathrm{mmol}$) was stirred for 4 h at room temperature. By addition of sodium hydrogen carbonate and water $(50 \mathrm{ml})$ the pH of the reaction mixture was adjusted to $7-8$ and the aqueous solution was extracted with ethyl acetate ($5 \times 100 \mathrm{ml}$), the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed. The crude product was purified by column chromatography (silica gel, ethyl acetate \rightarrow ethyl acetate/methanol $10: 1$) to obtain $\mathbf{1 0}(0.97 \mathrm{~g}, 53 \%)$ as a white solid. - M.p. 122.4-122.9 ${ }^{\circ} \mathrm{C}$; UV/vis (methanol): $\lambda_{\text {max }}$ $(\lg \varepsilon)=269 \mathrm{~nm}(4.23) .-R_{F}($ ethyl acetate/methanol 10:1) 0.52 . - IR (KBr): $v=3343 \mathrm{~m}, 3103 \mathrm{w}, 2939 \mathrm{w}, 2863 \mathrm{w}, 1594 \mathrm{~s}$, $1569 \mathrm{~m}, 1498 \mathrm{w}, 1441 \mathrm{~m}, 1404 \mathrm{~m}, 1342 \mathrm{~s}, 1234 \mathrm{~m}, 1150 \mathrm{w}$, $1045 \mathrm{~m} \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.71(\mathrm{~s}$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.10\left(\mathrm{~s}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 3.69-3.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 3.55 (ddd, $J=7.36,7.36,4.16 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 2.31 (brs, $1 \mathrm{H}, \mathrm{OH}$), 1.59-1.52 (m, 2 H, CH A_{A}-ethyl, 1-H), 1.46 (ddd, $\left.J=7.64,5.96,3.81 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.15(\mathrm{ddd}, J=6.28$, $6.28,4.36 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}$), 1.00 (dddd, $J=17.98,8.38$, $4.50,4.26 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$-ethyl). - ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=153.19$ (s, C-6'), 152.16 (d, C-2'), 151.34 (s, $\left.\mathrm{C}-4^{\prime}\right), 146.68$ (d, C-8 ${ }^{\prime}$), 131.94 ($\left.\mathrm{s}, \mathrm{C}-5^{\prime}\right), 61.70\left(\mathrm{t}, \mathrm{OCH}_{2}\right)$, 30.63 (d, C-2), 30.08 (t, CH2-ethyl), 15.10 (d, C-1), 10.26 (t, C-3). - MS (EI, 70 eV): $m / z(\%)=239$ (3.6), 237 (2.9), 221 (3.6), 219 (3.6), 209 (11.4), 207 (67.1), 205 (7.1), 194 (25.0), 183 (5.7), 167 (7.9), 157 (37.1), 155 (100.0). - HRMS calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}: 238.06213$; found: 238.06214. - Analysis for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}$ (238.68): calcd. C 50.32, $\mathrm{H} 4.65, \mathrm{Cl} 14.85$, N 23.47; found C 50.21, H 4.81, Cl 15.02, N 23.51.
(土)-2-[(1 RS, 2 RS)-cis-2-(6-Amino-9H-9-purinyl)cyclo-propyll-1-ethanol (\pm)-11)

A solution of $\mathbf{1 0}(0.9 \mathrm{~g}, 3.77 \mathrm{mmol})$ in liquid ammonia (100 ml) was heated at $76^{\circ} \mathrm{C}$ for 20 h in an autoclave (50 bar). After removal of the ammonia the residue was dissolved in methanol. The solvent was removed in vacuo to afford $11(0.80 \mathrm{~g}, 97 \%)$ as a white solid. - M.p. $185.4-$ $186.1^{\circ} \mathrm{C}$. $-R_{F}$ (ethyl acetate/methanol 10:1) 0.23 . - UV/vis (methanol): $\lambda_{\text {max }}(\lg \varepsilon)=264 \mathrm{~nm}(4.28) .-\mathrm{IR}(\mathrm{KBr}): v=$ $3296 \mathrm{~s}, 3125 \mathrm{~s}, 2931 \mathrm{~m}, 1677 \mathrm{~s}, 1608 \mathrm{~s}, 1577 \mathrm{~m}, 1480 \mathrm{~m}, 1404 \mathrm{~m}$, $1335 \mathrm{~m}, 1307 \mathrm{~m}, 1262 \mathrm{w}, 1194 \mathrm{w}, 1111 \mathrm{w}, 1048 \mathrm{~m} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.21\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.08$ ($\mathrm{s}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}$), $4.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.60-3.52(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 1.59-1.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$-ethyl), $1.48-1.35(\mathrm{~m}, 2 \mathrm{H}$, $\left.1-\mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.21\left(\mathrm{ddd}, J=7.29,4.21,4.21 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right)$, $0.89-0.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$-ethyl). - ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}_{6}$ DMSO): $\delta=156.15$ (s, C-6'), 152.67 (d, C-2'), $151.20(\mathrm{~s}$, $\left.\mathrm{C}-4^{\prime}\right), 141.77$ (d, C-8'), 119.18 (s, C-5'), 60.26 (t, OCH_{2}), 30.75 (d, C-2), 29.28 (t, CH_{2}-ethyl), 14.34 (d, C-1), 9.20 (t, C-3). - MS (EI, 70 eV): $m / z(\%)=219$ (41.4), 202 (7.9), 189 (33.6), 188 (100.0). - HRMS calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$: 219.11199; found: 219.11200 . - Analysis for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$ (219.25): calcd. C 54.78, H 5.98, N 31.94; found C 54.52, H 5.71, N 31.69 .

(\pm)-N4-\{trans-2-[2-(Tetrahydro-2H-2-pyranyloxy)-ethyl]-

 cyclopropyl\}-6-chloro-4,5-pyrimidinediamine ($(\pm)-12$)The reaction was performed under the conditions as described for 9 using 8 ($2.00 \mathrm{~g}, 10.80 \mathrm{mmol}$), triethylamine (50 ml), 5 -amino-4,6-dichloro-pyrimidine (2.93 g , $17.87 \mathrm{mmol})$ in n-butanol $(100 \mathrm{ml})$. After evaporation of the solvents and purification by column chromatography (silica gel, ethyl acetate/hexane $1: 1 \rightarrow 2: 1) \mathbf{1 2}(2.94 \mathrm{~g}, 87 \%)$ was obtained as a yellowish oil. - R_{F} (ethyl acetate/hexane 3:1) 0.5. - UV/vis (methanol): $\lambda_{\text {max }}(\lg \varepsilon)=302 \mathrm{~nm}$ (3.98). IR (film): $v=3355 \mathrm{~s}, 3251 \mathrm{~s}, 2941 \mathrm{~s}, 2870 \mathrm{~m}, 1737 \mathrm{~m}, 1644 \mathrm{~m}$, $1574 \mathrm{~s}, 1496 \mathrm{~s}, 1467 \mathrm{~s}, 1450 \mathrm{~s}, 1419 \mathrm{~s}, 1342 \mathrm{~m}, 1299 \mathrm{~m}, 1238 \mathrm{~m}$, $1200 \mathrm{~m}, 1184 \mathrm{~m}, 1162 \mathrm{~m}, 1119 \mathrm{~s}, 1075 \mathrm{~s}, 1030 \mathrm{~s} \mathrm{~cm}^{-1} .-$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.37$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $4.55\left(\mathrm{dd}, J=4.59,2.83 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$, $3.88-3.80\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, \mathrm{OCH}_{\mathrm{A}}\right), 3.66-3.42(\mathrm{~m}, 2 \mathrm{H}$, $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, \mathrm{OCH}_{\mathrm{B}}\right), 2.59(\mathrm{ddd}, J=7.91,5.57,3.22 \mathrm{~Hz}, 1 \mathrm{H}, 1-$ H), $1.81-1.45\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{2}, 4^{\prime \prime}-\mathrm{H}_{2}, 5^{\prime \prime}-\mathrm{H}_{2}, \mathrm{CH}_{2}\right.$-ethyl), $1.03-0.94(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 0.73-0.67\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{2}\right) .-$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $v=155.71\left(\mathrm{~s}, \mathrm{C}-6^{\prime}\right), 149.54$ (d, C-2'), 142.44 ($\mathrm{s}, \mathrm{C}-4^{\prime}$), 122.15 ($\mathrm{s}, \mathrm{C}-5^{\prime}$), 99.34 (d, C-2"), $66.97\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 62.70\left(\mathrm{t}, \mathrm{C}-6^{\prime \prime}\right), 32.45\left(\mathrm{t}, \mathrm{CH}_{2}\right.$-ethyl), 30.67 ($\mathrm{t}, \mathrm{C}-3^{\prime \prime}$), 30.46 (d, C-1), 25.30 (t, C-5"), 19.73 (t, C-4"), $17.83(\mathrm{~d}, \mathrm{C}-2), 13.99(\mathrm{t}, \mathrm{C}-3)$ - MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=$ 312 (14.3), 239 (7.9), 228 (32.9), 212 (27.1), 197 (20.7), 183 (21.4), 175 (19.3), 169 (25.0), 156 (30.0), 144 (18.6), 130 (6.4), 119 (4.3), 101 (5.0), 85 (100.0). - HRMS calcd.
for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2}$ ：312．13529；found：312．13527．－Anal－ ysis for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2}$（312．80）：calcd．C 53．76，H 6．77， Cl 11.33 ，N 17.91 ；found $\mathrm{C} 53.41, \mathrm{H} 6.82, \mathrm{Cl} 11.49$ ， N 17.69.
（土）－2－\｛（1 RS， 2 SR）－trans－2－（6－Chloro－9H－9－purinyl）－cyclo－ propyl $\}$－1－ethanol $((\pm)-13)$ and $(\pm)-2-\{(1 R S, 2 S R)$－trans－ 2－（5－Amino－6－chloro－4－pyrimidinyl－amino）cyclopropyl\}-1ethanol $((\pm)-14)$

The same experimental procedure as given for $\mathbf{1 0}$ start－ ing from $12(2.72 \mathrm{~g}, 8.70 \mathrm{mmol})$ ，triethyl orthoformate $(21.47 \mathrm{~g}, 144.87 \mathrm{mmol})$ and hydrochloric acid $(36 \%, 1.11 \mathrm{~g}$ ， $11.10 \mathrm{mmol})$ led to the crude products．Column chromatogra－ phy（silica gel，ethyl acetate \rightarrow ethyl acetate／methanol 10：1） of the residue yielded $\mathbf{1 3}(0.31 \mathrm{~g}, 15 \%)$ and $14(1.05 \mathrm{~g}, 53 \%)$ ．

Data for $(\pm)-13$ ：yellowish oil．$-R_{F}$（ethyl ac－ etate／methanol 10：1）0．52．－UV／vis（methanol）：$\lambda_{\max }(\lg$ $\varepsilon)=270 \mathrm{~nm}(3.70) .-\mathrm{IR}($ film $): v=3346 \mathrm{brm}, 3061 \mathrm{w}$ ， $2933 \mathrm{~m}, ~ 2239 \mathrm{w}, 1797 \mathrm{w}, 1724 \mathrm{~m}, 1592 \mathrm{~s}, 1564 \mathrm{~s}, 1496 \mathrm{~m}$ ， $1438 \mathrm{~m}, 1412 \mathrm{~m}, 1337 \mathrm{~m}, 1226 \mathrm{~s}, 1172 \mathrm{~m}, 1120 \mathrm{~m}, 1094 \mathrm{~m}$ ， $1063 \mathrm{~m} \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=8.74(\mathrm{~s}$ ， $\left.1 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 8.13\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.73-3.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$ ， 3.57 （ddd，$J=7.32,7.32,4.30 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 2.29(\mathrm{~s}, 1 \mathrm{H}$ ， $\mathrm{OH}), 1.61-1.45\left(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right), \mathrm{CH}_{\mathrm{A}}$－ethyl）， 1.16 （ddd，$\left.J=6.98,5.23,5.22 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right), 1.06-1.00(\mathrm{~m}, 1 \mathrm{H}$ ， CH_{B}－ethyl）．$-{ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=154.24$（s， C－6＇）， 153.20 （ $\mathrm{d}, \mathrm{C}-2^{\prime}$ ）， 152.39 （ $\mathrm{s}, \mathrm{C}-4^{\prime}$ ）， 147.70 （d，C－8＇）， 132.99 （ $\mathrm{s}, \mathrm{C}-5^{\prime}$ ）， $62.75\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 31.67(\mathrm{~d}, \mathrm{C}-2), 31.13(\mathrm{t}$ ， CH_{2}－ethyl）， 16.15 （d，C－1）， 11.30 （t，C－3）．－MS（EI， 70 eV ）： $m / z(\%)=239$（2．9）， 238 （0．7）， 237 （3．6）， 221 （2．1）， 219 （2．9）， 209 （21．4）， 207 （59．3）， 205 （6．4）， 194 （24．3）， 183 （12．5）， 167 （21．8）， 157 （38．2）， 155 （100．0）， 129 （7．9）， 119 （8．6）， 104 （15．0）， 84 （4．3）， 77 （4．6）．－HRMS calcd．for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}$ ： 238．06213；found：238．06213．－Analysis for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}$ （238．68）：calcd．C 50．32，H 4．65，N 23．47；found C 50．21， H 4．39，N 23．23．

Data for $(\pm)-14$ ：yellowish solid．－M．p．161．2－ $163.0^{\circ} \mathrm{C} .-R_{F}$（ethyl acetate／methanol 10：1）0．56．－UV／vis （methanol）：$\lambda_{\max }(\lg \varepsilon)=272 \mathrm{~nm}$（3．74）．$-\mathrm{IR}(\mathrm{KBr})$ ： $v=3447 \mathrm{~m}, 3351 \mathrm{~m}, 3254 \mathrm{~m}, 2941 \mathrm{~m}, ~ 2864 \mathrm{w}, 1668 \mathrm{~m}$ ， $1636 \mathrm{~m}, 1592 \mathrm{~s}, 1503 \mathrm{~m}, 1475 \mathrm{~m}, 1449 \mathrm{~m}, 1414 \mathrm{~m}, 1396 \mathrm{w}$ ， $1341 \mathrm{~m}, 1300 \mathrm{~m}, 1236 \mathrm{~m}, 1198 \mathrm{w}, 1164 \mathrm{w}, 1100 \mathrm{~m}, 1068 \mathrm{~m}$ ， $1010 \mathrm{w} \mathrm{cm}{ }^{-1} .-{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=7.79$（s， $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.84-3.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$ ， 2.55 （ddd，$J=7.18,3.57,3.57 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 1.97-1.91$（m， $1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$－ethyl）， 1.10 （dddd，$J=15.65,9.01,4.37,4.37 \mathrm{~Hz}$ ， $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$－ethyl）， 0.87 （ddd，$J=9.18,5.28,3.90 \mathrm{~Hz}, 1 \mathrm{H}$ ， $\left.3-\mathrm{H}_{\mathrm{A}}\right), 0.80-0.72(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 0.63$（ddd，$J=7.37,5.52$ ， $\left.5.52 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right) .-{ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=$ 155.09 （ $\mathrm{s}, \mathrm{C}-6^{\prime}$ ）， 146.96 （d，C－2＇）， 138.66 （ $\mathrm{s}, \mathrm{C}-4^{\prime}$ ）， 125.63 （s，C－5＇）， $63.51\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 36.36\left(\mathrm{t}, \mathrm{CH}_{2}\right.$－ethyl）， 31.23 （d， C－2）， 20.54 （d，C－1）， 11.62 （t，C－3）．－MS（EI， 70 eV ）：m／z $(\%)=229(12.9), 228(6.1), 227$（3．6）， 213 （12．1）， 211 （30．0）， 199 （21．4）， 197 （65．0）， 186 （30．7）， 184 （95．7）， 171 （37．1），

169 （100．0）．－HRMS calcd．for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}: 228.07778$ ； found：228．07777．－Analysis for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}$（228．68）： calcd．C 47．27，H 5．73，N 24.50 ；found C 47．03，H 5．53， N 24．34．
（土）－2－\｛（1 RS， 2 SR）－trans－2－（6－Amino－9H－9－purinyl）－cyclo－ propyl $\}$－1－ethanol $((\pm)-15$

A solution of $\mathbf{1 3}(0.29 \mathrm{~g}, 1.22 \mathrm{mmol})$ in liquid ammo－ nia（ 25 ml ）was heated at $76^{\circ} \mathrm{C}$ for 20 h in an auto－ clave（30 bar）．After removal of the ammonia the residue was dissolved in methanol．The solvent was removed in vacuo and the residue was subjected to column chromato－ graphy（silica gel，ethyl acetate／methanol 10：1）to obtain 15 （ $0.17 \mathrm{~g}, 64 \%$ ）as a yellowish solid．－M．p．192．2－ $193.0^{\circ} \mathrm{C} .-R_{F}$（ethyl acetate／methanol 10：1）0．23．－UV／vis （methanol）：$\lambda_{\text {max }}(\lg \varepsilon)=266 \mathrm{~nm}$（3．90）．－IR（KBr）： $v=3284 \mathrm{~s}, 3135 \mathrm{~s}, 2930 \mathrm{~m}, 2872 \mathrm{~m}, 1728 \mathrm{~m}, 1675 \mathrm{~s}, 1608 \mathrm{~s}$ ， $1573 \mathrm{~m}, 1515 \mathrm{~m}, 1480 \mathrm{~m}, 1457 \mathrm{~m}, 1422 \mathrm{~m}, 1404 \mathrm{~m}, 1382 \mathrm{~m}$ ， $1336 \mathrm{~m}, 1300 \mathrm{~s}, 1256 \mathrm{~m}, 1198 \mathrm{~m}, 1120 \mathrm{~m}, 1064 \mathrm{~m}, 1026 \mathrm{~m}$ ， $1006 \mathrm{~m} \mathrm{~cm}^{-1}$ ．－${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=8.33$（s， 1 $\left.\mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.76\left(\mathrm{~s}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 5.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.95-3.86$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.20(\mathrm{ddd}, J=7.05,3.53,3.53 \mathrm{~Hz}, 1 \mathrm{H}$ ， $2-\mathrm{H}), 1.30-1.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$－ethyl，1－H），1．10－1．02（m， $\left.1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right), 0.96\left(\mathrm{ddd}, J=7.94,4.33,3.05 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right)$ ， $0.91-0.85$（m， $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$－ethyl）．－${ }^{13} \mathrm{C}$ NMR（ 100 MHz ， CDCl_{3} ）：$\delta=156.76$（s，C－6＇）， 153.97 （d，C－2＇）， 152.17 （s， $\left.\mathrm{C}-4^{\prime}\right), 142.13\left(\mathrm{~d}, \mathrm{C}-8^{\prime}\right), 120.63\left(\mathrm{~s}, \mathrm{C}-5^{\prime}\right), 62.64\left(\mathrm{t}, \mathrm{OCH}_{2}\right)$ ， 35.83 （d，C－2）， 31.49 （t，CH2－ethyl）， 19.18 （d，C－1）， 11.91 （t， C－3）．－MS（EI， 70 eV$): m / z(\%)=219$（35．0）， 202 （7．9）， 189 （65．7）， 188 （100．0）．－HRMS calcd．for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$ ： 219．11200；found：219．11201．－Analysis for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$ （219．25）：calcd．C 54．78，H 5．98，N 31．94；found C 54．92， H 5．99，N 31.85.
（土）－\｛（1 RS， 2 SR）－trans－2－［2－（Tetrahydro－2H－2－pyranyl－ oxy）ethyl］cyclopropyl\}-3-(3-methoxy-2-methyl-acryloyl)urea $((\pm)-16)$

Following the procedure given for the preparation of compound 23 using 3－methoxy－2－methylacryloyl chloride $(1.80 \mathrm{~g}, 13.38 \mathrm{mmol})$ ，silver cyanate $(2.30 \mathrm{~g}, 15.34 \mathrm{mmol})$ in dry benzene $(15 \mathrm{ml})$ and $\mathbf{8}(0.80 \mathrm{~g}, 4.32 \mathrm{mmol})$ ，com－ pound $16(1.02 \mathrm{~g}, 72 \%)$ was obtained after purification by column chromatography（silica gel，ethyl acetate／hexane $1: 1$ ） as a yellowish oil．$-R_{F}$（ethyl acetate／hexane $1: 1$ ）0．19．－ UV／vis（methanol）：$\lambda_{\max }(\lg \varepsilon)=259 \mathrm{~nm}(4.13) .-\mathrm{IR}$ （film）：$\delta=3270 \mathrm{~m}, 2941 \mathrm{~m}, 2869 \mathrm{~m}, 1689 \mathrm{~s}, 1615 \mathrm{~m}, 1538 \mathrm{~s}$ ， $1454 \mathrm{~m}, 1402 \mathrm{~m}, 1369 \mathrm{w}, 1352 \mathrm{~m}, 1295 \mathrm{~m}, 1244 \mathrm{~s}, 1184 \mathrm{~m}$ ， 1130s， $1076 \mathrm{~m}, 1034 \mathrm{~s} \mathrm{~cm}{ }^{-1} . ~-~{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）： $\delta=8.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCNHCO}), 8.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.33(\mathrm{~d}$ ， $J=1.17 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 4.56-4.53\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 3.84-$ $3.74\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, \mathrm{OCH}_{\mathrm{A}}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.48-$ $3.40\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, \mathrm{OCH}_{\mathrm{B}}\right), 2.46$（ddd，$J=5.66,4.49$ ，
$2.54 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 1.80-1.74\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}_{2}\right), 1.72$（d， $\left.J=0.98 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.70-1.61\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 1.55-$ $1.44\left(\mathrm{~m}, 5 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 5^{\prime \prime}-\mathrm{H}_{2}, \mathrm{CH}_{2}\right.$－ethyl）， $1.00-0.93$（m， $1 \mathrm{H}, 2-\mathrm{H}), 0.69$（ddd，$J=9.28,5.37,3.91 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}$ ）， 0.56 （ddd，$J=9.37,9.37,3.71 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}$ ）．$-{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.63(\mathrm{~s}, \mathrm{CO}), 158.40(\mathrm{~d}, \mathrm{CH}=)$ ， 155.43 （ $\mathrm{s}, \mathrm{NHCONH}$ ）， 107.50 （ $\mathrm{s}, \mathrm{C}_{\mathrm{q}}$ ）， 98.75 （d，C－2 ${ }^{\prime \prime}$ ）， 66.48 $\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 62.09(\mathrm{t} \mathrm{C-6}), 61.27\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 32.49\left(\mathrm{t}, \mathrm{CH}_{2}-\right.$ ethyl）， 30.57 （t，C－3＂）， 28.59 （d，C－1）， 25.32 （t，C－5＂）， 19.37 （t，C－4＂）， 17.16 （d，C－2）， 13.19 （t，C－3）， 8.56 （q，CH3）．－ MS（EI， 70 eV$): m / z(\%)=327$（3．6）， 311 （4．3）， 279 （0．7）， 243 （2．9）， 227 （5．7）， 211 （3．6）， 197 （7．9）， 178 （4．3）， 159 （39．3）， 141 （7．1）， 116 （7．1）， 99 （100．0）．－HRMS calcd．for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}: 326.18416$ ；found：326．18417．－Analysis for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$（326．39）：calcd．C 58．88，H 8．03，N 8.58 ；found C 58．97，H 7．85，N 8．55．
（土）－1－\｛（1 RS， 2 SR）－trans－2－（2－Hydroxyethyl）cyclopropyl $\}$－ 5－methyl－1，2，3，4－tetrahydro－pyrimidine－2，4－dione（（ \pm ）－17）

According to the preparation of 22 from 16 （ 0.47 g ， $1.44 \mathrm{mmol})$ and sulfuric acid（ $2 \mathrm{~N}, 20 \mathrm{ml}$ ），compound 17 （ $0.21 \mathrm{~g}, 68 \%$ ）was obtained as a yellowish solid．－M．p． 196．4－197．0 ${ }^{\circ} \mathrm{C}$ ．$-R_{F}$（ethyl acetate／methanol 10：1）0．59．－ UV／vis（methanol）：$\lambda_{\text {max }}(\lg \varepsilon)=275 \mathrm{~nm}(4.11)$ ． IR（film）： $v=3382 \mathrm{~s}, 3156 \mathrm{~m}, 3016 \mathrm{~m}, 2923 \mathrm{~s}, 1667 \mathrm{~s}, 1454 \mathrm{~m}, 1425 \mathrm{~m}$ ， $1387 \mathrm{~m}, 1321 \mathrm{~m}, 1297 \mathrm{~m}, 1163 \mathrm{~m}, 1074 \mathrm{~m}, 1018 \mathrm{~m} \mathrm{~cm}^{-1} .-$ ${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=9.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.05$ （s， $\left.1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 3.83-3.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.87$（ddd， $J=7.11,3.51,3.51 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}$ ， CH_{A}－ethyl）， $1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18-1.14(\mathrm{~m}, 1 \mathrm{H}, 2-$ H ）， $1.07-1.01$（m， $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$－ethyl）， 0.96 （ddd，$J=9.80$ ， $\left.6.12,3.73 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right), 0.80-0.76\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right)$. ${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=163.80\left(\mathrm{~s}, \mathrm{C}-4^{\prime}\right), 152.87$ （ $\mathrm{s}, \mathrm{C}-2^{\prime}$ ）， 140.78 （d，C－6＇）， 111.16 （ $\left.\mathrm{s}, \mathrm{C}-5^{\prime}\right), 61.97\left(\mathrm{t}, \mathrm{OCH}_{2}\right)$ ， 36.47 （d，C－1）， 35.21 （t，CH2－ethyl）， 19.63 （d，C－2）， 12.13 $\left(\mathrm{q}, \mathrm{CH}_{3}\right), 11.30(\mathrm{t}, \mathrm{C}-3) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=210$ （13．6）， 182 （17．1）， 180 （7．9）， 166 （12．1）， 154 （2．9）， 140 （6．1）， 136 （16．4）， 127 （100．0）．－HRMS calcd．for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ ： 210．10043；found：210．10042．－Analysis for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ （210．23）：calcd．C 57．13，H 6．71，N 13．33；found C 57．33， H 6．58，N 12．87．
（土）－\｛（1 R RS， 2 SR）－trans－2－［2－（Tetrahydro－2H－2－pyranyl－ oxy）ethyl］cyclopropyl\}-3-(3-ethoxy-acryloyl)urea ((土)-18)

Similarly as described for compound $\mathbf{2 3}$ using 3－ethoxy－ acryloyl chloride（ $2.00 \mathrm{~g}, 14.86 \mathrm{mmol}$ ），silver cyanate $(3.36 \mathrm{~g}, 22.42 \mathrm{mmol})$ in dry benzene $(20 \mathrm{ml})$ and $\mathbf{8}(1.09 \mathrm{~g}$ ， $5.88 \mathrm{mmol}), \mathbf{1 8}(1.39 \mathrm{~g}, 72 \%)$ was obtained as a yellowish solid．- M．p． $102.6-103.9{ }^{\circ} \mathrm{C} .-R_{F}$（ethyl acetate／hexane 3：1）0．45．－UV／vis（methanol）：$\lambda_{\max }(\lg \varepsilon)=252 \mathrm{~nm}$ （4．25）．－IR（KBr）：$\delta 3272 \mathrm{~m}, 3091 \mathrm{~m}, 2940 \mathrm{~m}, 2869 \mathrm{~m}, 1704 \mathrm{~s}$ ， $1676 \mathrm{~s}, 1606 \mathrm{~s}, 1537 \mathrm{~s}, 1499 \mathrm{~s}, 1473 \mathrm{~m}, 1455 \mathrm{~m}, 1396 \mathrm{~m}, 1370 \mathrm{w}$ ，
$1345 \mathrm{~m}, 1325 \mathrm{~m}, 1244 \mathrm{~s}, 1184 \mathrm{~s}, 1151 \mathrm{~s}, 1076 \mathrm{~m}, 1062 \mathrm{~m}, 1031 \mathrm{~s}$ ， $1000 \mathrm{~m} \mathrm{~cm}^{-1}$ ．－${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=9.97$（s， $1 \mathrm{H}, \mathrm{OCNHCO}), 8.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.56(\mathrm{~d}, J=12.30 \mathrm{~Hz}$ ， $1 \mathrm{H}, \mathrm{OCH}=), 5.36(\mathrm{~d}, J=12.30 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 4.54-4.52$ $\left(\mathrm{m}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 3.91\left(\mathrm{q}, J=6.40 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right.$－ethyl）， $3.83-3.73\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, \mathrm{OCH}_{\mathrm{A}}\right), 3.47-3.39(\mathrm{~m}, 2 \mathrm{H}$ ， $6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, \mathrm{OCH}_{\mathrm{B}}$ ）， $2.44(\mathrm{ddd}, J=3.42,3.42,2.05 \mathrm{~Hz}, 1 \mathrm{H}$ ， $1-\mathrm{H}), 1.79-1.71\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 1.69-1.62\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\right.$ $\mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{\mathrm{A}}$－ethyl）， $1.52-1.35\left(\mathrm{~m}, 5 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 5^{\prime \prime}-\mathrm{H}_{2}\right.$ ， CH_{B}－ethyl）， 1.28 （t，$J=4.69 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ）， $1.00-0.93$ （m，1 H，2－H）， 0.70 （ddd，$J=9.28,5.27,4.10 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 0.57-0.53\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right) .-{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$ ， $\left.\mathrm{CDCl}_{3}\right): \delta=168.38(\mathrm{~s}, \mathrm{CO}), 162.54(\mathrm{~d}, \mathrm{OCH}=), 156.48$ （s，NHCONH）， 98.74 （d，OC－CH＝）， 98.06 （d，C－2＂）， 67.01 （ $\mathrm{t}, \mathrm{OCH}_{2}$－ethyl）， $66.45\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 62.08\left(\mathrm{t}, \mathrm{C}-6^{\prime \prime}\right), 32.43(\mathrm{t}$ ， CH_{2}－ethyl）， 30.53 （t，C－3＂）， 28.45 （d，C－1）， 25.27 （t，C－5 ${ }^{\prime \prime}$ ）， 19.35 （ $\mathrm{t}, \mathrm{C}-4^{\prime \prime}$ ）， 17.31 （d，C－2）， $14.20\left(\mathrm{q}, \mathrm{CH}_{3}\right), 12.92$（t， C－3）．－MS（EI， 70 eV$): m / z(\%)=327$（0．4）， 297 （0．7）， 285 （0．7）， 256 （0．4）， 242 （44．3）， 226 （4．3）， 211 （8．6）， 197 （6．4）， 185 （6．4）， 172 （5．7）， 159 （100．0）．－HRMS calcd．for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}: 326.18416$ ；found：326．18416．－Analysis for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$（326．39）：calcd．C 58．88，H 8．03，N 8．58；found C 58．71，H 7．98，N 8.48 ．

（土）－1－［（1 RS， 2 SR）－trans－2－（2－Hydroxyethyl）cyclopropyl］－

 1，2，3，4－tetrahydro－pyrimidine－2，4－dione（（ \pm ）－19）The reaction was performed under the conditions as de－ scribed for 21 using 18 （ $0.80 \mathrm{~g}, 2.46 \mathrm{mmol}$ ）in sulfu－ ric acid（ $2 \mathrm{~N}, 25 \mathrm{ml}$ ）．After neutralisation and evapora－ tion of the solvents under reduced pressure，the residue was extracted with ethyl acetate（ 300 ml ）．The combined or－ ganic phases were dried over MgSO_{4} and evaporated in vacuo．The residue was purified by column chromatogra－ phy（silica gel，ethyl acetate／methanol 10：1）to afford com－ pound $19(0.32 \mathrm{~g}, 66 \%)$ as a yellowish solid．－M．p． $227-$ $228{ }^{\circ} \mathrm{C} .-R_{F}$（ethyl acetate／methanol 10：1）0．50．－UV／vis （methanol）：$\lambda_{\max }(\lg \varepsilon)=270 \mathrm{~nm}$（3．91）．－IR（KBr）： $v=3376 \mathrm{~m}, 3134 \mathrm{~m}, 3010 \mathrm{~m}, 2957 \mathrm{~m}, 2876 \mathrm{w}, 2810 \mathrm{~m}, 1675 \mathrm{~s}$ ， $1616 \mathrm{~m}, 1470 \mathrm{~m}, 1420 \mathrm{~m}, 1396 \mathrm{~m}, 1354 \mathrm{w}, 1320 \mathrm{~m}, 1298 \mathrm{~s}$ ， 1238w，1192w，1123w，1093w，1075m，1022w cm ${ }^{-1}$ ．－${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{d}_{6}$－DMSO）：$\delta=11.16$（s， $1 \mathrm{H}, \mathrm{NH}$ ）， 7.49 $\left(\mathrm{d}, J=8.01 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 5.47(\mathrm{~d}, J=7.91 \mathrm{~Hz}, 1 \mathrm{H}$ ， $\left.5^{\prime}-\mathrm{H}\right), 3.56-3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.77$（ddd，$J=7.24$ ， $3.66,3.64 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 1.58-1.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$－ethyl）， 1．38－1．31（m， $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$－ethyl），1．14－1．10（m， $\left.1 \mathrm{H}, 2-\mathrm{H}\right)$ ， 0.97 （ddd，$J=9.71,5.81,3.91 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}$ ）， $0.76-0.72$ （m， $\left.1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right) .-{ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{d}_{6}$－DMSO）：$\delta=$ 163.66 （ $\mathrm{s}, \mathrm{C}-4^{\prime}$ ）， 152.03 （ $\mathrm{s}, \mathrm{C}-2^{\prime}$ ）， 145.63 （d，C－6＇）， 100.72 （d，C－5＇）， $60.25\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 36.12(\mathrm{~d}, \mathrm{C}-1), 34.67\left(\mathrm{t}, \mathrm{CH}_{2}-\right.$ ethyl）， 17.42 （d，C－2）， 12.10 （t，C－3）．－MS（EI， 70 eV ）：m／z $(\%)=196(7.1), 179$（1．4）， 168 （20．7）， 152 （12．9）， 140 （3．6）， 122 （13．6）， 113 （100．0）．－HRMS calcd．for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ ： 196．08478；found：196．08477．－Analysis for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$
（196．20）：calcd．C 55．10，H 6．16，N 14．28；found C 55.18 ， H 6．32，N 14．09．

（土）－\｛（1 RS， 2 RS）－cis－2－［2－（Tetrahydro－2H－2－pyranyl－oxy）－ ethyl］cyclopropyl\}-3-(3-ethoxy-acryloyl)urea ((土)-20)

The reaction was performed under the conditions as de－ scribed for 23 using 3－ethoxy－acryloyl chloride（1．79 g， $13.2 \mathrm{mmol})$ ，silver cyanate $(2.6 \mathrm{~g}, 17.28 \mathrm{mmol})$ in dry ben－ zene（ 20 ml ）and the amine $6(0.8 \mathrm{~g}, 4.32 \mathrm{mmol})$ ．Af－ ter evaporation of the solvents and purification by column chromatography（silica gel，ethyl acetate／hexane 1：1） 20 （1．06 g，75\％）was obtained as a yellowish solid．－M．p． $78.9-79.3{ }^{\circ} \mathrm{C} .-R_{F}$（ethyl acetate／hexane 3：1）0．45．－UV／vis （methanol）：$\lambda_{\max }(\lg \varepsilon)=252 \mathrm{~nm}$（4．29）．－IR（film）：$v=$ $3233 \mathrm{~m}, 3088 \mathrm{~m}, 2942 \mathrm{~s}, 2868 \mathrm{~m}, 2247 \mathrm{w}, 1707 \mathrm{~s}, 1673 \mathrm{~s}, 1606 \mathrm{~s}$ ， $1548 \mathrm{~s}, 1496 \mathrm{~s}, 1396 \mathrm{~m}, 1346 \mathrm{~m}, 1246 \mathrm{~s}, 1162 \mathrm{~s}, 1076 \mathrm{~m}, 1060 \mathrm{~m}$ ， $1032 \mathrm{~s} \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=9.19$（s， $1 \mathrm{H}, \mathrm{OCNHCO}), 8.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.60(\mathrm{~d}, J=12.30 \mathrm{~Hz}$ ， $1 \mathrm{H}, \mathrm{OCH}=), 5.32(\mathrm{~d}, J=12.30 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 4.59(\mathrm{dd}$ ， $\left.J=12.30,7.23 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 3.95(\mathrm{q}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}$ ， OCH_{2}－ethyl），3．86－3．80（m，2 H， $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, \mathrm{OCH}_{\mathrm{A}}\right), 3.49-$ $3.44\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, \mathrm{OCH}_{\mathrm{B}}\right), 2.79$（ddd，$J=7.37,7.37$ ， $4.05 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 1.82-1.65\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right.$ ， CH_{A}－ethyl）， $1.61-1.46\left(\mathrm{~m}, 5 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 5^{\prime}-\mathrm{H}_{2}, \mathrm{CH}_{\mathrm{B}}-\right.$ ethyl）， $1.32\left(\mathrm{t}, J=7.13 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07-0.88(\mathrm{~m}, 2 \mathrm{H}$ ， $2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}$ ）， 0.28 （ddd，$J=6.44,5.76,3.03 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}$ ）．${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$v=168.13$（ s, CO ）， $162.82(\mathrm{~d}$ ， $\mathrm{OCH}=$ ）， 156.44 （ $\mathrm{s}, \mathrm{NHCONH}$ ）， 98.93 （ $\mathrm{d}, \mathrm{OC}-\mathrm{CH}=$ ）， 98.09 （d，C－2＂）， 67.18 （t，OCH 2 －ethyl）， $66.99\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 61.96(\mathrm{t}$ ， C－6＂）， 30.58 （t，CH2－ethyl）， 28.19 （t，C－3＂）， 26.53 （d，C－ 1）， 25.38 （t，C－5 ${ }^{\prime \prime}$ ）， 19.41 （t，C－4＂）， 14.52 （d，C－2）， 14.32 $\left(\mathrm{q}, \mathrm{CH}_{3}\right), 11.63(\mathrm{t}, \mathrm{C}-3) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=327$ （0．4）， 242 （32．9）， 225 （6．4）， 213 （7．1）， 197 （6．8）， 185 （4．3）， 172 （3．6）， 159 （100．0）．－HRMS calcd．for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$ ： 326．18416；found：326．18416．－Analysis for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$ （326．39）：calcd．C 58．88，H 8．03，N 8．58；found C 58．66， H 8．25，N 8.69.

（土）－1－［（1 RS， 2 RS）－cis－2－（2－Hydroxyethyl）cyclopropyl］－ 1，2，3，4－tetrahydro－pyrimidine－2，4－dione（（ \pm ）－21）

A solution of $20(0.86 \mathrm{~g}, 2.63 \mathrm{mmol})$ in sulfuric acid（ 2 N ， 20 ml ）was stirred for 2 h at $75^{\circ} \mathrm{C}$ then cooled to $5^{\circ} \mathrm{C}$ neu－ tralised with $\mathrm{NaOH}(8 \mathrm{~N})$ and concentrated under reduced pressure．The precipitate was washed with ethyl acetate $(300 \mathrm{ml})$ ．The washings were dried $\left(\mathrm{MgSO}_{4}\right)$ ，the solvent was removed in vacuo and the residue subjected to column chromatography（silica gel，ethyl acetate／methanol 10：1）to afford 21 （ $0.37 \mathrm{~g}, 71 \%$ ）as a yellowish solid．－M．p． 142.7 － $143.5^{\circ} \mathrm{C} .-R_{F}$（ethyl acetate／methanol 10：1）0．49．－UV／vis （methanol）：$\lambda_{\max }(\lg \varepsilon)=271 \mathrm{~nm}(4.00)$ ．$-\mathrm{IR}(\mathrm{KBr}): v=$ 3412s，3162w，3087w，3036m，2932w，2877w，1731s，1666s， $1462 \mathrm{w}, 1427 \mathrm{w}, 1387 \mathrm{~m}, 1364 \mathrm{w}, 1306 \mathrm{~m}, 1247 \mathrm{w}, 1120 \mathrm{w}$ ， 1058w，1023m cm ${ }^{-1}$ ．－${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{d}_{6}$－DMSO）：
$\delta=7.52\left(\mathrm{~d}, J=7.91 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 5.47(\mathrm{~d}, J=7.91,1 \mathrm{H}$ ， $\left.5^{\prime}-\mathrm{H}\right), 3.44-3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.06$（ddd，$J=7.49,7.49$ ， $4.43,1 \mathrm{H}, 1-\mathrm{H}), 1.55-1.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$－ethyl）， $1.19-1.15$ （m，1 H，C－2）， 1.01 （ddd，$\left.J=9.51,5.71,5.71,1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right)$ ， $0.91-0.84$（m， $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$－ethyl）， 0.73 （ddd，$J=6.33,6.33$ ， $\left.4.53,1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right) .-{ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{d}_{6}$－DMSO）：$\delta=$ 163.77 （ $\mathrm{s}, \mathrm{C}-4^{\prime}$ ）， 152.07 （ $\mathrm{s}, \mathrm{C}-2^{\prime}$ ）， 146.23 （d，C－6＇）， 100.41 （d，C－5＇）， 60.47 （t， OCH_{2} ）， 34.98 （d，C－1）， 30.58 （t， $\mathrm{CH}_{2}-$ ethyl）， 15.06 （d，C－2）， 9.61 （t，C－3）．－MS（EI， 70 eV ）：m／z $(\%)=196$（2．5）， 179 （1．4）， 168 （6．4）， 166 （6．4）， 151 （7．9）， 140 （2．5）， 126 （4．3）， 122 （18．6）， 113 （100．0）．－HRMS calcd． for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ ：196．08478；found：196．08478．－Analysis for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$（196．20）：calcd．C 55．10，H 6．16，N 14．28； found C 55．13，H 6．23，N 14．00．
（土）－1－［（1 RS， 2 RS）－cis－2－（2－Hydroxyethyl）cyclopropyl］－5－ methyl－1，2，3，4－tetrahydro－pyrimidine－2，4－dione（（ \pm ）－22）

Compound 23 （ $0.6 \mathrm{~g}, 1.84 \mathrm{mmol}$ ）was dissolved in sulfu－ ric acid $(2 \mathrm{~N}, 20 \mathrm{ml})$ and stirred for 2 h at $76^{\circ} \mathrm{C}$ ．After cooling in an ice－bath the mixture was neutralised with $\mathrm{NaOH}(8 \mathrm{~N})$ and concentrated under reduced pressure．The residue was extracted with ethyl acetate $(300 \mathrm{ml})$ ．The organic phase was dried over MgSO_{4} and evaporated under reduced pressure． The remaining residue was purified by column chromatog－ raphy（silica gel，ethyl acetate／methanol 10：1）to obtain 22 $(0.33 \mathrm{~g}, 85 \%)$ as a white solid．－M．p． $145.3-145.9^{\circ} \mathrm{C}$ ．－ R_{F}（ethyl acetate／methanol 10：1）0．48．－UV／vis（methanol）： $\lambda_{\max }(\lg \varepsilon)=276 \mathrm{~nm}(4.28) .-\mathrm{IR}(\mathrm{KBr}): v=3491 \mathrm{~s}$ ， $3148 \mathrm{~m}, 3085 \mathrm{~m}, 3019 \mathrm{~m}, 2940 \mathrm{~m}, 2885 \mathrm{~m}, 2820 \mathrm{~m}, 2360 \mathrm{~m}$, $1704 \mathrm{~s}, 1652 \mathrm{~s}, 1474 \mathrm{~m}, 1454 \mathrm{~m}, 1426 \mathrm{~m}, 1399 \mathrm{w}, 1373 \mathrm{~m}$ ， $1355 \mathrm{~m}, ~ 1306 \mathrm{~s}, 1246 \mathrm{w}, 1192 \mathrm{w}, 1142 \mathrm{w}, 1111 \mathrm{w}, 1065 \mathrm{~m}$ ， $1032 \mathrm{~m} \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=9.60$（s， $1 \mathrm{H}, \mathrm{NH}), 7.02\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 3.70-3.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$ ， 3.12 （ddd，$J=7.41,7.41,4.50,1 \mathrm{H}, 1-\mathrm{H}), 2.62(\mathrm{~s}, 1 \mathrm{H}$ ， $\mathrm{OH}), 1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.69-1.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$－ethyl）， 1．36－1．30（m，1 H，2－H），1．26－1．21（m，1 H，CHB－ethyl）， 1.17 （ddd，$J=14.81,7.36,7.36,1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}$ ）， 0.62 （ddd， $\left.J=6.38,6.38,4.67,1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right) .-{ }^{13} \mathrm{C}$ NMR（ 100 MHz ， CDCl_{3} ）：$\delta=165.34$（ $\mathrm{s}, \mathrm{C}-4^{\prime}$ ）， 153.60 （ $\mathrm{s}, \mathrm{C}-2^{\prime}$ ）， 142.09 （d，C－ $\left.6^{\prime}\right), 111.47\left(\mathrm{~s}, \mathrm{C}-5^{\prime}\right), 63.04\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 36.70(\mathrm{~d}, \mathrm{C}-1), 31.55$ （t， CH_{2}－ethyl）， 17.09 （d，C－2）， 13.21 （q， CH_{3} ）， 11.27 （t，C－ 3）．－MS（EI， 70 eV$): m / z(\%)=210(9.6), 193$（1．4）， 182 （17．1）， 179 （9．3）， 165 （20．0）， 154 （3．6）， 149 （5．0）， 140 （6．4）， 136 （21．4）， 127 （100．0）．－HRMS calcd．for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ ： 210．10043；found：210．10043．－Analysis for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ （210．23）：calcd．C 57．13，H 6．71，N 13．33；found C 57．09， H 6．80，N 12.96.
（土）－［（1 RS， 2 RS）－cis－2－［2－（Tetrahydro－2H－2－pyranyl－oxy）－ ethyl］cyclopropyl］－3－（3－methoxy－2－methylacryloyl）－urea （ \pm ）－23）

A suspension of 3－methoxy－2－methylacryloyl chloride $(1.73 \mathrm{~g}, 12.86 \mathrm{mmol})$ and silver cyanate $(2.3 \mathrm{~g}, 15.27 \mathrm{mmol})$
in dry benzene (10 ml) was heated under reflux for 30 min . The mixture was cooled to $0^{\circ} \mathrm{C}$ and the supernatant liquor was rapidly added to the amine $6(0.8 \mathrm{~g}, 4.32 \mathrm{mmol})$. The solution was stirred for 20 h at room temperature and concentrated. The residue was purified by column chromatography (silica gel, ethyl acetate/hexane $1: 1$) to yield $23(0.95 \mathrm{~g}$, 67%) as a yellowish solid. - M. p. $93.3-94.0^{\circ} \mathrm{C} .-R_{F}$ (ethyl acetate/hexane 1:1) 0.18. - UV/vis (methanol): $\lambda_{\text {max }}(\lg \varepsilon)=$ 259 nm (4.27). - IR (KBr): $v=3362 \mathrm{~m}, 3258 \mathrm{~s}, 3072 \mathrm{w}, 2947 \mathrm{~s}$, $2870 \mathrm{~m}, 2786 \mathrm{w}, 2651 \mathrm{w}, 2361 \mathrm{w}, 1687 \mathrm{~s}, 1659 \mathrm{~s}, 1543 \mathrm{~s}, 1489 \mathrm{~s}$, $1455 \mathrm{~s}, 1405 \mathrm{~m}, 1370 \mathrm{~m}, 1296 \mathrm{~s}, 1247 \mathrm{~s}, 1159 \mathrm{~s}, 1078 \mathrm{~s}, 1068 \mathrm{~m}$, $1036 \mathrm{~s}, 1024 \mathrm{~m} \mathrm{~cm}^{-1}-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 9.07 (s, $1 \mathrm{H}, \mathrm{OCNHCO}), 8.79$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.40 (d, $J=$ $1.17,1 \mathrm{H}, \mathrm{CH}=), 4.54\left(\mathrm{dd}, J=7.42,7.42,1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 3.83-$ $3.74\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, \mathrm{OCH}_{\mathrm{A}}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.46-$ $3.39\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, \mathrm{OCH}_{\mathrm{B}}\right), 2.74(\mathrm{ddd}, J=7.37,7.37$, $4.05,1 \mathrm{H}, 1-\mathrm{H}), 1.78-1.72\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 1.70(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.68-1.63\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, \mathrm{CH}_{\mathrm{A}}\right.$-ethyl), $1.60-1.42$ (m, $5 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{B}}, 5^{\prime}-\mathrm{H}_{2}, \mathrm{CH}_{\mathrm{B}}$-ethyl), $0.99-0.87(\mathrm{~m}$,
$2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}$), 0.23 (ddd, $J=4.83,4.83,2.39,1 \mathrm{H}, 3-$ H_{B}). $-{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.82$ (s, CO), 158.26 (d, CH), 156.25 ($\mathrm{s}, \mathrm{NHCONH}), 107.26\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 98.78$ (d, C-2"), $67.03\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 61.87\left(\mathrm{t}, \mathrm{C}-6^{\prime \prime}\right), 61.12\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$, 30.48 (t, CH2-ethyl), 28.09 (t, C-3"), 26.42 (d, C-1), 25.29 (t, C-5 ${ }^{\prime \prime}$), 19.30 ($\left.\mathrm{t}, \mathrm{C}-4^{\prime \prime}\right), 14.26$ (d, C-2), 11.56 (t, C-3), $8.50\left(\mathrm{q}, \mathrm{CH}_{3}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=327(0.7), 242$ (21.4), 225 (6.1), 211 (4.3), 197 (2.9), 159 (65.0), 116 (8.2), 100 (14.3), 99 (100.0). - HRMS calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$: 326.18416; found: 326.18415. - Analysis for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$ (326.39): calcd. C 58.88, H 8.03, N 8.58; found C 58.80, H 8.15, N 8.32 .

Acknowledgements

Financial support by the European Communities (SC1*-CT92-0780) and the Fonds der Chemischen Industrie is gratefully acknowledged. We like to thank Dr. K. Mohr and Mrs. R. Ziehn for their help with the HPLC separations and Dr. D. Ströhl for his help with the NMR spectra.
[1] A. D. Borthwick, K. Biggadike, K. Tetrahedron 48, 571 (1992).
[2] G. A. Jacobs, J. A. Tino, R. Zahler, Tetrahedron Lett. 30, 6955 (1989).
[3] G. R. Geen, M. R. Harnden, M. Parrat, J. Bioorg. Med. Chem. Lett. 1, 347 (1991).
[4] M. G. Lee, J. F. Du, M. W. Chun, C. K. Chu, J. Org. Chem. 62, 1991 (1997).
[5] R. Csuk, Y. von Scholz, Tetrahedron 52, 6383 (1996).
[6] R. Csuk, A. Kern, Tetrahedron 55, 8409 (1999).
[7] P. D. Armstrong, J. G. Cannon, J. Med. Chem. 13, 1037 (1970).
[8] N. Gauvry, F. Huet, Tetrahedron 55, 1321 (1999).
[9] R. Csuk, R. Y. von Scholz, Tetrahedron 51, 7193 (1995).
[10] P. Herdewijn, J. Balzarini, E. De Clercq, J. Vanderhaeghe, J. Med. Chem. 28, 1385 (1985).

