Triiodotelluronium Hexafluoroarsenate TeI₃[AsF₆]. The Crystal Structure of the Hemi SO₂ Solvate and the Structure Relation to the Unsolvated Form Johannes Beck and Folker Steden Institut für Anorganische Chemie der Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Reprint requests to Prof. Dr. J. Beck. Fax: (intern.)+49 (0)228 735660. E-mail: j.beck@uni-bonn.de Z. Naturforsch. 58b, 711 - 714 (2003); received May 12, 2003 TeI₃[AsF₆] is formed from Te, I₂, and AsF₅ in liquid SO₂. At room temperature light red crystals of the hemi SO₂ solvate TeI₃[AsF₆] \cdot 0.5 SO₂ are obtained from a saturated solution. The crystal structure (orthorhombic, *Pnnm*, a=1107.41(2), b=1866.58(3), c=1207.00(2) pm at 123 K, Z=8) consists of pyramidal TeI₃⁺ cations (Te-I = 267 pm), almost regular octahedral [AsF₆]⁻ anions and of SO₂ molecules which show disorder for the O atom positions. A remarkable feature of the crystal structure is the arrangement of the TeI₃⁺ ions that are pairwise associated, facing each other with the I atoms and forming large voids between each other. This causes the significantly lower density of TeI₃[AsF₆] \cdot 0.5 SO₂ (3.88 Mgm⁻³) in comparison to the unsolvated form (4.20 Mgm⁻³, Passmore 1981). Key words: Triiodotelluronium(+), Hexafluoroarsenate(V)(-), Sulfurdioxide Solvate, Crystal Structure ## Introduction Chalcogen tetrahalides EX_4 (E = S, Se, Te; X = F, Cl, Br, I) can act both as Lewis bases and as Lewis acids. Strongly acidic halide ion acceptors withdraw halide ions and transform EX₄ to EX₃⁺ ions. Salt like compounds containing EX3+ cations have been prepared and characterized with various counterions [1-3, and references therein]. Iodides, however, are rare and only SeI₃[AsF₆] [4], $SeI_3[SbF_6]$ [4], $TeI_3[AsF_6]$ [5], $TeI_3[SbF_6]$ [4], $TeI_3[AII_4]$ [6], $TeI_3[GaI_4]$ [7], and $TeI_3[InI_4]$ [7] are known. With the aim to obtain cationic species with a high chalcogen content, e.g. the Te analogue of Se ₆I₂ $[AsF_6]_2$ [8], we performed reactions of Te, I_2 , and AsF₅ in liquid sulfur dioxide and succeeded in the isolation of a new crystalline phase, the SO₂ solvate of TeI₃[AsF₆]. Its crystal structure and the structure relation to the already known unsolvated form are presented here. # **Experimental Section** Preparation of $TeI_3[AsF_6] \cdot 0.5 SO_2$ The reactions were carried out in "H-tube" vessels as previously described [9, 10]. Sulfur dioxide was stored for sev- eral days over P_4O_{10} and freshly condensed into the reaction vessel. Iodine was mortared with P_4O_{10} and sublimated; tellurium was sublimated in a closed quartz vacuum ampoule. All glassware was flame dried in vacuum before use, and handling of the starting materials was performed in an argon filled glove box to exclude humidity. In a typical experiment, 540 mg of I_2 (4.26 mmol) and 352 mg of Te (2.75 mmol) were filled in one bulb of a H-tube vessel in a glove box. 400 mg of AsF_5 (2.35 mmol) and 40 ml of liquid SO_2 were condensed onto the solids using a cold bath. The closed vessel was allowed to warm to room temperature. After 15 min the solution obtained a reddish-brown colour. After 2 h of stirring the solution was filtered from the solids through the glass frit into the second bulb. Keeping the solution for 3 d at room temperature caused a precipitation of light-red, dark red and light-brown crystals. Crystal structure determination A light-red crystal was selected from the precipitate using the cold-oil method [11]. A crystal of the dimensions $0.22 \times 0.17 \times 0.10~\text{mm}^3$ was used for all crystallographic measurements embedded in a drop of frozen, glassy perfluorinated ether. The data set was collected with a BRUKERNONIUS Kappa-CCD diffractometer at 150 K. Examination of the reciprocal lattice revealed the crystal class *mmm*. The absence of integral extinctions and the presence of zonal 0932–0776 / 03 / 0800–0711 $\$ 06.00 $\$ 2003 Verlag der Zeitschrift für Naturforschung, Tübingen \cdot http://znaturforsch.com Table 1. Crystallographic data, data collection and refinement for $TeI_3[AsF_6] \cdot 0.5SO_2$. | mene for refy[rist ()] old 5 0 2. | | |--------------------------------------|---| | Formula | $As_2F_{12}I_6O_2STe_2$ | | M_r per formula unit | 1458.5 | | Crystal system, space group | orthorhombic, Pnnm | | Lattice constants | a = 1107.41(2) pm | | | b = 1866.58(3) pm | | | c = 1207.00(4) pm | | Unit cell volume | $V = 2494.95(7) \cdot 106 \text{ pm}^3$ | | Number of formula units | Z=4 | | Density (calc.) | $\rho = 3.883 \text{ Mg} \cdot \text{m}^{-3}$ | | Absorption coefficient | $\mu = 125.6 \text{ cm}^{-1}$ | | Temperature | T = 150 K | | 2θ Range | $4^{\circ} < 2\theta < 55^{\circ}$ | | Measured reflections | 29086, | | | -14 < h < 14, | | | -24 < k < 24, | | | -15 < l < 15 | | Unique reflections; Rint | 2999; 8.6% | | Refined parameters | 138 | | Ratio reflections/parameters | 21.7 | | R Factors | $wR(F^2) = 6.97\%$ | | | R(F) = 4.61 % for all | | | reflections | | | R(F) = 3.67 % for 2624 | | | reflections with $I > 2\sigma(I)$ | | Goodness of fit | 1.122 | | Residual electron density (max/min.) | $+1.78/-0.98 \text{ e}/10^6 \text{ pm}^3$ | extinctions (0kl : k + l = 2n, h0l : h + l = 2n) led to the space groups Pnn2 and Pnnm, of which the centrosymmetric group was confirmed by the refinement. The structure was solved by direct methods [12] and refined on F^2 with anisotropic displacement parameters except for the O atom of the SO₂ molecule [13]. This atom was treated as disordered over four positions. The refined occupation factors give a sum of 1.02(4), thus representing a complete SO₂ molecule. A numerical absorption correction was applied to the data set. The shape of the crystal with 9 faces was optimised using the program HABITUS [14]. Table 1 contains the crystallographic data and details of data collection and structure refinement, Table 2 the positional parameters of the atoms. Further details of the crystal structure determination have been deposited with the Fachinformationszentrum Karlsruhe, D-76334 Eggenstein-Leopoldshafen (crysdata@fizkarlsruhe@email.de) from where they can be obtained by referring to the deposit number CSD-391236. # **Results and Discussion** Synthesis of $TeI_3[AsF_6] \cdot 0.5 SO_2$ The reaction of Te and I_2 with AsF_5 in liquid SO_2 at room temperature using an excess of Te yields a variety of products, which can be crystallized from the solution. Examination of the hand-separated crystals by X-ray diffraction showed the presence of light-brown Table 2. Positional parameters and equivalent isotropic displacement parameters $/10^4~\rm pm^2$ of the atoms in the structure of TeI₃[AsF₆]·0.5 SO₂. Additionally, the site occupation factors of the split positions for the oxygen atoms O(A)—O(D) are given. Standard deviations in brackets refer to the last significant digit. | Atom | x | у | z | $B_{ m eq}$ | sof | |-------|------------|------------|------------|-------------|---------| | Te | 0.24843(4) | 0.59198(2) | 0.21139(3) | 1.588(9) | | | I(1) | 0.19954(4) | 0.47186(2) | 0.32354(4) | 2.46(1) | | | I(2) | 0.44980(4) | 0.63009(3) | 0.31745(4) | 2.59(1) | | | I(3) | 0.08958(4) | 0.67764(3) | 0.31239(4) | 2.66(1) | | | As(1) | 0.5 | 0.5 | 0 | 1.86(2) | | | As(2) | 0 | 0.5 | 0 | 1.67(2) | | | As(3) | 0.26940(9) | 0.77172(5) | 0 | 1.75(2) | | | F(11) | 0.4466(6) | 0.5867(3) | 0 | 3.0(1) | | | F(12) | 0.6037(4) | 0.5211(2) | 0.1012(3) | 2.7(1) | | | F(21) | 0.0150(4) | 0.5649(2) | 0.1010(4) | 2.7(1) | | | F(22) | -0.1531(5) | 0.5115(3) | 0 | 2.6(1) | | | F(31) | 0.3549(6) | 0.7346(3) | 0.1010(5) | 5.6(1) | | | F(32) | 0.1797(6) | 0.8091(3) | 0.0992(7) | 7.4(2) | | | F(33) | 0.3551(5) | 0.8488(3) | 0 | 2.8(1) | | | F(34) | 0.1841(7) | 0.6953(3) | 0 | 4.3(1) | | | S | 0.7727(6) | 0.6682(3) | 0 | 8.1(1) | | | O(A) | 0.666(6) | 0.680(3) | 0.030(5) | 4(2) | 0.09(2) | | O(B) | 0.743(9) | 0.666(3) | 0.103(6) | 9(2) | 0.22(6) | | O(C) | 0.807(4) | 0.6846(15) | 0.122(3) | 6(1) | 0.37(5) | | O(D) | 0.858(3) | 0.7050(15) | 0.050(3) | 8(1) | 0.34(3) | Table 3. Selected bond lengths /pm and angles f in the structure of $TeI_3[AsF_6] \cdot 0.5 SO_2$. | | | - | | |-----------------|-----------|--------------|----------| | Te-I(1) | 267.45(6) | As(2)-F(22) | 170.9(5) | | Te-I(2) | 266.79(6) | As(3)-F(31) | 169.2(5) | | Te-I(3) | 267.16(6) | As(3)-F(32) | 170.5(6) | | As(1)-F(11) | 172.3(5) | As(3)-F(33) | 172.3(6) | | As(1)-F(12) | 172.2(5) | As(3)-F(34) | 171.0(6) | | As(2)-F(21) | 172.6(4) | | | | I(1)-Te-I(2) | 98.62(2) | I(1)-Te-I(3) | 97.90(2) | | I(2)-Te- $I(3)$ | 99.90(2) | | | | | | | | Te₆[AsF₆] $_4$ ·2 SO₂ [15], dark red Te₄[AsF₆] · x SO₂ (x = 1,4) [10], the already known unsolvated form of TeI₃[AsF₆] [5], and of light-red crystals of the new, solvated form TeI₃[AsF₆]·0.5 SO₂. TeI_3^+ and $[AsF_6]^-$ ions are formed from Te, I_2 and AsF_5 according to eq. (1): $$2\text{Te} + 3\text{I}_2 + 3\text{AsF}_5 \rightarrow 2\text{TeI}_3^+ + 2[\text{AsF}_6]^- + \text{AsF}_3$$ (1) Crystal structure of $TeI_3[AsF_6] \cdot 0.5 SO_2$ and the relation to the solvate free form The crystal structure of $TeI_3[AsF_6] \cdot 0.5 \ SO_2$ consists of TeI_3^+ and $[AsF_6]^-$ ions, and of SO_2 molecules. Fig. 1 depicts the structure of the molecules, Fig. 2 shows the unit cell. All four atoms of the TeI_3^+ Fig. 1. The TeI_3^+ ion, the three independent $[\text{AsF}_6]^-$ ions and the disordered SO_2 molecule in the structure of $\text{TeI}_3[\text{AsF}_6]\cdot 0.5$ SO_2 . Displacement ellipsoids represent a probability density of 50%. Symmetry operators: I=x,y,-z; II=-x+1,-y+1,z; III=-x,-y+1,-z; IV=-x,-y+1,z. cation occupy crystallographically independent positions. The Te-I distances are in average 267 pm and differ less than 1 pm, the I-Te-I angles are in average 99° and differ less than 2° (Table 3). The ion thus approximately fulfils the $C_{3\nu}$ symmetry. The three independent As atoms occupy special positions. As(1) and As(2) are both located on the position 2/m, two F atoms of each anion are located on mirror planes giving the ions crystallographic C_{2h} symmetry. As(3), F(33), and F(34) are occupying special positions on mirror planes, giving the anion overall symmetry C_s . Despite the crystallographic symmetry is lower, all three ions are almost regular octahedra with As-F bond lengths between 169.2 and 172.6 pm, and F-As-F angles between 88.1(3) and $92.2(3)^{\circ}$. The sulfur atom of the neutral SO₂ molecule is located on a mirror plane. The two oxygen atoms are distributed by a rotational disorder over 8 sites. Fig. 2. The unit cell of $TeI_3[AsF_6] \cdot 0.5 \text{ SO}_2$. $[AsF_6]^-$ ions are depicted as grey octahedra. Fig. 3. The $\mathrm{TeI_3}^+$ ions and their coordination environment in the structures of $\mathrm{TeI_3}[\mathrm{AsF_6}]$ -0.5 $\mathrm{SO_2}$ (a) and $\mathrm{TeI_3}[\mathrm{AsF_6}]$ (b). $[\mathrm{AsF_6}]^-$ ions are shown as grey octahedra. The lines in Fig. b connect six $\mathrm{AsF_6}$ octahedra to from a big octahedron filled with a $\mathrm{TeI_3}^+$ ion. Two adjacent tetrahedral voids are also shown. A typical feature of compounds containing trigonal-pyramidal $\mathrm{EX_3}^+$ ions is the completion of the coordination environment of the chalcogen atom to give a distorted 3+3 octahedron by halogen atoms of the surrounding halometalate anions [1, 3]. This feature is not distinctly present in the structure of $\mathrm{TeI_3}[\mathrm{AsF_6}] \cdot 0.5$ $\mathrm{SO_2}$. Within a sphere of radius 350 pm seven F atoms of neighbouring $[\mathrm{AsF_6}]^-$ ions coordinate the Te atom of the $\mathrm{TeI_3}^+$ ion with Te-F distances between 295 and 337 pm. The $\mathrm{SO_2}$ molecules do not play a coordinating role in the crystal structure since all S-Te, O-Te, S-I, O-I, S-F, and O-F distances are larger than 300 pm. Besides the presence of SO₂ molecules the structures of the solvated and solvate free form of TeI₃[AsF₆] show outstanding differences in the arrangement of the ions. The volume of a molecule of SO_2 is about $55 \cdot 10^6$ pm³ [16]. The comparison of the unit cell volumes of TeI₃[AsF₆]·0.5 SO₂ and TeI₃[AsF₆] show an increase in volume of 290. 10⁶ pm³ [17]. Since four SO₂ molecules are present in the unit cell of the solvated form a volume increase of about 220 · 10⁶ pm³ would be expected. The observed increase is higher indicating a less dense packing in the solvated form. This is reflected by the lower density (3.88 Mgm^{-3}) of $\text{TeI}_3[\text{AsF}_6] \cdot 0.5 \text{ SO}_2$ with respect to $TeI_3[AsF_6]$ (4.20 Mgm⁻³) [5]. A remarkable feature of the crystal structure of the solvated form is the arrangement of the TeI₃⁺ ions which are pairwise associated, facing each other with the I atoms in an ecliptic configuration and forming large voids between each (Fig. 3a). From the point of view of electrostatic balance in a ionic crystal structure such an arrangement is unfavourable, since the negatively polarized ends of the two ${\rm TeI_3}^+$ ions come close (shortest I-I contact 426 pm). In contrast to this, the structure of the unsolvated form can be regarded as a closest packing of ${\rm [AsF_6]}^-$ ions with the ${\rm TeI_3}^+$ ions for a large part in octahedral voids. Fig. 3b shows a section of this NaCl-type arrangement. One iodine atom of the ${\rm TeI_3}^+$ cation sticks out of the octahedral void made up by six ${\rm [AsF_6]}^-$ anions into the adjacent tetrahedral void. This gives the structure of the solvate free form of ${\rm TeI_3[AsF_6]}$ the significantly higher density with respect to the solvated form. ### Acknowledgements The support of our work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. - B.H. Christian, M.J. Collins, R.J. Gillespie, J.F. Sawyer, Inorg. Chem. 25, 777 (1986). - [2] B. Krebs, F.-P. Ahlers, Adv. Inorg. Chem. Radiochem. 35, 235 (1990). - [3] J. Beck, T. Schloerb, Z. Kristallogr. 214, 780 (1999). - [4] J. P. Johnson, M. Murchie, J. Passmore, M. Tajik, P. S. White, Can J. Chem. 65, 2744 (1987). - [5] J. Passmore, G. W. Sutherland, P.S. White, Can J. Chem. 59, 2876 (1981). - [6] J. Beck, A. Fischer, Z. Anorg. Allg. Chem. 621, 1042 (1995). - [7] E. Schulz Lang, U. Abram, J. Strähle, E.M. Vazquez Lopez, Z. Anorg. Allg. Chem. 624, 999 (1998). - [8] J. Passmore, P.S. White, C.-M. Wong, J. Chem. Soc. Chem. Commun. 85, 1178 (1985). - [9] J. Passmore, P. Taylor, J. Chem. Soc. Dalton Trans. 804 (1976). - [10] J. Beck, F. Steden, A. Reich, H. Fölsing, Z. Anorg. Allg. Chem. 629, 1073 (2003). - [11] T. Kottke, D. Stahlke, J. Appl. Chem. 26, 615 (1993). - [12] G. M. Sheldrick, SHELXS, Program for Crystal Structure Solution, University of Göttingen (1992). - [13] G. M. Sheldrick, SHELXL-93, Program for Crystal Structure Refinement, University of Göttingen (1993). - [14] H. Bärnighausen, W. Herrendorf, HABITUS, Program for Numerical Absorption Correction, Universities of Karlsruhe and Gießen, 1992 and 1997. - [15] R. C. Burns, R. J. Gillespie, W.-C. Luk, D. R. Slim, Inorg. Chem. 18, 3086 (1979). - [16] The value was calculated from the unit cell volume of solid SO₂: B. Post, R. S. Schwarz, I. Fankuchen, Acta Crystallogr. 5, 372 (1952). - [17] This consideration does not take into account that the lattice constants of TeI₃[AsF₆]·0.5 SO₂ are valid for a temperature of 150 K and those of TeI₃[AsF₆] for 293 K.