Decarbonylation of Pentamethylcyclopentadienyl Tetracarbonylvanadium, $Cp*V(CO)_4$, in the Presence of Oxygen. The X-Ray Crystal Structure Analyses of $Cp*V(CO)_4$ and $[Cp*V(O)(\mu-O)]_4$

Max Herberhold, Anna-Maria Dietel, and Wolfgang Milius

Anorganisch-chemisches Laboratorium der Universität Bayreuth, Postfach 101251, D-95440 Bayreuth

Reprint requests to Prof. M. Herberhold. Fax: +49(0)921-55-2157. E-mail: Max.Herberhold@uni.bayreuth.de

Dedicated to Professor Hartmut Bärnighausen on the occasion of his 70th birthday

Z. Naturforsch. 58b, 299-304 (2003); received December 17, 2002

The reaction of $Cp*V(CO)_4$ (1) with molecular oxygen in diluted pentane solution leads to a tetrameric dioxide, $[Cp*V(O)(\mu-O)]_4$ (2), which is a precursor of the octanuclear aggregate $Cp*_6V_8O_{17}$ (3). The molecular structures of 1 and 2 have been determined by X-ray crystallography.

Key words: Vanadium, Organometallic Oxides, Crystal Structures

Introduction

Organometallic oxides containing the 10-electron fragment pentamethylcyclopentadienyl-vanadium (Cp*V) are well known [1–3]; prominent examples are the pseudocubane cluster [Cp*V- $(\mu_3$ -O)]₄ and the adamantane-type assembly [Cp*V]₄(μ -O)₆ which contain vanadium(III) and vanadium(IV), respectively. Both are conveniently synthesized [2] by reductive aggregation of Cp*V(O)Cl₂.

The vanadium[V] oxide, [Cp*VO₂], is not available in the monomeric form, but the trimer, [Cp*V(O)(μ -O)]₃, has been obtained by the reaction of Cp*V(O)Cl₂ with Ag₂CO₃ in THF solution [4].

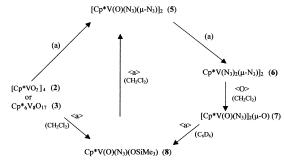
As an alternative route to Cp* vanadium(V) oxidative decarbonylation oxides, Cp*V(CO)₄ (1) by molecular oxygen has been studied [5] in hexane, toluene and THF solution. The black product which is isolated after solvent evaporation from the dark-red toluene solutions is an octanuclear aggregate. According to Bottomley and coworkers [6], the infrared and NMR spectroscopic data (¹H, ¹³C, ¹⁷O and ⁵¹V) are consistent with an oxo bridge between two tetranuclear subunits, *i.e.* $[Cp*_3V_4(O)_4(\mu-O)_4]_2(\mu-O)$. The same product of composition Cp*6V8O17 was also obtained from analogous reactions of VCp*₂ [6], $[Cp*V(\mu-O)]_4$ [2] and $[Cp*V]_4(\mu-O)_6$ [6] with oxygen gas in solution.

Results and Discussion

We have observed that a tetranuclear intermediate, $[Cp*VO_2]_4$ (2), is formed during the early stages of the oxidative decarbonylation of $Cp*V(CO)_4$ (1) along the route to the octanuclear aggregate, $Cp*_6V_8O_{17}$ (3).

Synthesis and reactivity of the tetramer $[Cp*V(O)(\mu-O)]_4$ (2)

If a slow stream of O_2 is bubbled through a saturated solution of $Cp*V(CO)_4$ (1), e. g. 2 mmol of 1 in 100 ml of pentane, a quantitative conversion to $Cp*_6V_8O_{17}$ (3) eventually takes place, and the nearly colourless solvent can be decanted from the insoluble black precipitate of 3. If, however, a diluted solution, e. g. 0.25 mmol of 1 in 100 ml of pentane, is stirred in air (i. e., O_2 diluted by a fourfold excess of N_2), a red-black pentane solution is obtained from which some black precipitate of compound 3 forms over night. The pentane solution contains the tetramer $[Cp*V(O)(\mu-O)]_4$ (2).


The molecular structure assigned to **2** on the basis of a crystal structure determination (Fig. 2) agrees with the spectroscopic data. The IR spectrum (1376 (Cp*), 1261 m, 959 w and 927 w, 800 and 722 (broad) cm⁻¹, CsI pellet) indicates the presence of both terminal and bridging oxo ligands. The ¹H NMR spectrum of **2** (in C_6D_6) contains three signals at δ 2.21, 2.14 and 2.10 with

an integrated intensity ratio of 1:2:1, whereas two peaks are observed in the 51V NMR spectrum (C_6D_6) at δ – 628 and – 649 with an approximate ratio of 3:1. The slow conversion of 2 to 3 can be noticed in the ⁵¹V NMR spectrum; it is accelerated in polar solvents such as CDCl₃. In line with this experience, a reliable ¹³C NMR spectrum of **2** was not obtained due to the formation of 3. The spectroscopic data of the red-black tetramer $[Cp*V(O)(\mu-O)]_4$ (2) are significantly different from those of the blue trimer $[Cp*V(O)(\mu-O)]_3$ $(\delta(^{1}\text{H}) 2.13 \text{ and } 2.09, \text{ intensity ratio } 1:2; \delta(^{51}\text{V})$ - 530 and - 547, ratio 2:1, all values in CDCl₃; IR: 920 and 935 cm⁻¹ (V = O terminal) [4]. They also differ from those of the octanuclear aggregate, $Cp_6^*V_8O_{17}$ (3), ($\delta(^1H)$ 2.11 (C_6D_6), only one type of Cp* ligands, $\delta(^{51}V) - 472$ and -573 (1:3) in CDCl₃; IR: 975, 957, 943, 797 (broad) and 660 cm⁻¹) [5].

The chemistry of **2** and **3** is comparable, although the more soluble tetramer **2** reacts faster than **3**. The presence of sources for chloro ligands (Cl_2 , $SOCl_2$, Me_3SiCl) leads to $Cp*V(O)Cl_2$ (**4**) (*cf.* [6]). The reaction of **2** or **3** with trimethylsilyl azide, Me_3Si-N_3 , was used to prepare Cp*V azido complexes [7, 8].

Trimethylsilyl azide is able to abstract oxo ligands and to introduce azido ligands (N_3) into the coordination sphere [7]. Whereas **5** and **8** were characterized on the basis of their IR and NMR spectra [7], the molecular structures of **6** and **7** were determined by X-ray crystallography [7,8].

A similar reaction sequence can be established [9] for the reaction of **2** or **3** with trimethylsilyl isothiocyanate, Me₃Si-NCS, which leads to mono-

<a> excess of trimethylsilyl azide in solution; (a) solvent trimethylsilyl azide

Scheme 1. Reactions of $\bf 2$ and $\bf 3$ with trimethylsilyl azide, Me_3Si-N_3 (a).

meric $Cp*V(O)(NCS)_2$ and $Cp*V(NCS)_3$ or (in the presence of air) to the dinuclear oxo-bridged product $[Cp*V(O)(NCS)]_2(\mu-O)$, analogous to 7.

X-ray crystal structures of 1 and 2

The molecular structures of the tetracarbonylmetal halfsandwich complexes $Cp*M(CO)_4$ (M = V (1), Nb and Ta) have not been reported so far (cf. [10]). After many attempts we obtained suitable crystals of $Cp*V(CO)_4$ (1) from pentane solution (monoclinic, space group C2/c, Z=8). The square-pyramidal, tetra-legged piano-stool geometry is presented in Figs. 1a and 1b; the bond lengths and selected angles are compiled in Table 1.

The vanadium atom is not exactly centered above the Cp* ring (Table 1). The methyl substituents (C(5)-C(10)) are bent outwards, away from the metal by 6.7° (av.). The planes defined by C(1)-C(5) (cyclopentadienyl ring) and C(11)-C(14) (carbonyl carbon atoms) are essentially parallel (dihedral angle 1.3°). The vanadium-ring center distance (V-Cp*(Z) 191.1 pm in 1) is identical with that in the unsubstituted cyclopentadienyl complex CpV(CO)₄ in which the cyclopentadienyl ring is disordered (V-Cp(Z) 191.3 pm [11]). The angles between the (linear) carbonyl ligands in $Cp*V(CO)_4$ (1) are 122.9 \pm 0.9° for the trans- and 76.8 ± 0.4 for the *cis*-arrangement, whereas consistently small angles were registered for the two unsubstituted tetracarbonylmetal complexes $CpV(CO)_4$ (82.6(3), 78.4(3) and 75.7(1)° [11]) and $CpNb(CO)_4$ (75.0(4), 74.7(3) and 74.4(3)° [10]) which possess a mirror-symmetrical structure in the centrosymmetric space group *Pnma*.

Suitable crystals for an X-ray crystallographic structure analysis of the tetramer $[Cp*V(O)-(\mu-O)]_4$ (2) were isolated during attempts to recrystallize $Cp*V(CO)_4$ (1) from diethyl ether under an atmosphere of argon which inadvertently contained traces of air. The molecular structure of 2 is shown in Fig. 2, essential bond lengths and bond angles are given in Tables 2 and 3, respectively.

The triclinic unit cell (space group $P\bar{1}$, Z=4) contains two pairs of molecules, *i. e.* **A** (Fig. 2) and **B**, with slightly differing distances and angles. The eight-membered ring of alternating [Cp*V(O)] fragments and oxo bridges is nearly planar, with only one [Cp*V(O)] corner protruding from the

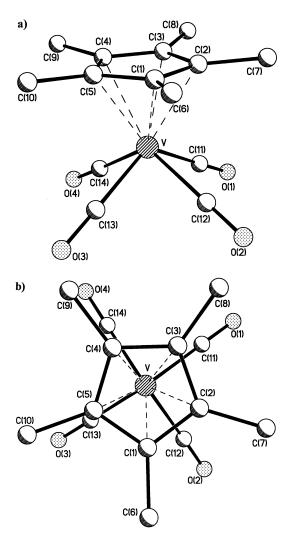


Fig. 1. Molecular structure of $Cp*V(CO)_4$ (1) in the crystal. 1a: Piano-stool model; 1b: View along the V-Cp*(Z)axis.

plane of the remaining 7 atoms, $V_3(\mu\text{-O})_4$. In the case of molecule \mathbf{A} (which contains V(1)-V(4) and O(1)-O(8)), a dihedral angle of 103.1° is found between plane O(5)-V(1)-O(8) and the main plane O(5)V(2)O(6)V(3)O(7)V(4)O(8) (mean deviations 4.1 pm, *cf.* Fig. 3).

It is interesting to note that the related eightmembered ring of the antiferromagnetic chlorooxo vanadium(IV) complex, $[Cp*V(Cl)(\mu-O)]_4$, is essentially planar [12]; the four oxo bridges occupy sites on a crystallographic plane, with the vanadium atoms alternating by \pm 4.7 pm above and be-

Table 1. Bond lengths [pm] and selected bond angles [°] in pentamethylcyclopentadienyl tetracarbonylvanadium, $Cp*V(CO)_4$ (1).

V-C(1)	225.2(4)	C(1)-C(2)	142.0(6)
V-C(2)	224.6(4)	C(1)-C(5)	142.1(6)
V-C(3)	226.8(4)	C(2)-C(3)	142.9(6)
V-C(4)	228.3(4)	C(3)-C(4)	140.3(6)
V-C(5)	226.7(4)	C(4)-C(5)	141.7(7)
V-C(11)	194.0(5)	C(1)-C(6)	149.5(7)
V-C(12)	193.8(5)	C(2)-C(7)	150.6(6)
V-C(13)	192.3(5)	C(3)-C(8)	150.5(6)
V-C(14)	194.0(5)	C(4)-C(9)	150.5(6)
` /	. ,	C(5)-C(10)	151.7(6)
C(11)-O(1)	114.2(5)	() ()	. ,
C(12)-O(2)	113.7(5)	V-Cp*(Z)	191.5
C(13)-O(3)	116.2(5)	1 (/	
C(14)-O(4)	113.8(5)		
` / ` /	. ,		
C(11)-V-C(12)	77.2(2)	V-C(11)-O(1)	179.0(5)
C(11)-V-C(13)	122.0(2)	V-C(12)-O(2)	178.5(5)
C(11)-V-C(14)	76.4(2)	V-C(13)-O(3)	178.6(5)
C(12)-V-C(13)	76.5(2)	V-C(14)-O(4)	178.7(5)
C(12)-V-C(14)	123.8(2)		()
C(13)-V-C(14)	77.1(2)		
0(10)	, , (2)		

 $Cp^*(Z)$ is the center of the pentamethylcyclopentadienyl ring, Cp^* .

low the O₄ plane, and Cp* or Cl also alternating above and below this plane.

It is tempting to assume that the particular [Cp*V(O)] corner of **2** loses its Cp* ring ligand and combines with a second Cp*-deficient fragment $[Cp*_3V_4O_8]$ *via* an additional oxo bridge to give $[Cp*_3V_4(O)_4(\mu-O)_4](\mu-O)$ (3). Single oxo

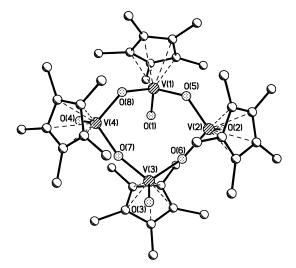


Fig. 2. Molecular structure of $[Cp*V(O)(\mu\text{-}O)]_4$ (2), molecule **A**.

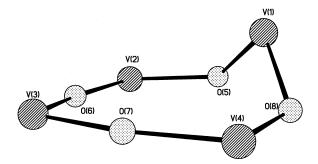


Fig. 3. Central eight-membered V_4O_4 ring in [Cp*V- $(O)(\mu$ -O)]₄ (2), molecule **A**.

bridges between cluster aggregates are known, e. g. $[Cp_5V_6(\mu_3-O)_8]_2(\mu-O)$ [13].

In complex **2** the bond distances between the vanadium atoms and the respective terminal oxo ligand (av. $161.3(8) \pm 0.8 \,\mathrm{pm}$) indicate V=O double bonds, whereas the vanadium-oxygen bond lengths within the ring (av. $180.2 \pm 0.9 \,\mathrm{pm}$) are compatible with single bonds. The angles O-V-O within the ring of molecule **A** (av. $105.6 \pm 0.8^{\circ}$) are very similar. However, due to the non-planar geometry of the eight-membered ring, two types of V-O-V angles are found, *i.e.* $128.3 \pm 1.0^{\circ}$ at O(5) and O(8), but $164.5 \pm 0.7^{\circ}$ at O(6) and O(7) respectively, whereas all V-O-V angles are $165.1(5)^{\circ}$ in the planar ring of $[\mathrm{Cp*V}(\mathrm{Cl})(\mu\mathrm{-O})]_4$ [12]. Generally, the distances and angles in **2**

Table 2. Bond lengths [pm] involving vanadium in the tetramer $[Cp*V(O)(\mu-O)]_4$ (2), molecule **A**.

162.1(8) 179.9(7) 180.9(7) 242.1(16) 241.8(16) 229.4(14)	V(2)-O(2)) V(2)-O(5) V(2)-O(6) V(2)-C(11) V(2)-C(12)	160.5(8) 179.8(8) 179.4(8) 235.9(15) 228.9(14)
225.9(13) 226.3(13)	V(2)-C(14) V(2)-C(15)	224.3(13) 239.3(16) 243.8(14)
202.0 160.8(8) 179.8(8)	V(4)-O(4) V(4)-O(7)	202.9 161.8(7) 180.1(7)
179.4(7) 244.7(15) 227.7(15)	V(4)-O(8) V(4)-C(31) V(4)-C(32)	182.8(8) 230.9(18) 230.8(16)
236.6(14) 245.3(15) 205.0	V(4)-C(33) V(4)-C(34) V(4)-C(35) V(4)-Cp*(Z ⁴)	232.3(15) 244.4(15) 236.4(18) 205.6
	179.9(7) 180.9(7) 242.1(16) 241.8(16) 229.4(14) 225.9(13) 226.3(13) 202.0 160.8(8) 179.8(8) 179.4(7) 244.7(15) 227.7(15) 227.3(15) 236.6(14) 245.3(15)	179.9(7) V(2)-O(5) 180.9(7) V(2)-O(6) 242.1(16) V(2)-C(11) 241.8(16) V(2)-C(12) 229.4(14) V(2)-C(13) 225.9(13) V(2)-C(14) 226.3(13) V(2)-C(15) 202.0 V(2)-Cp*(Z²) 160.8(8) V(4)-O(4) 179.8(8) V(4)-O(7) 179.4(7) V(4)-O(8) 244.7(15) V(4)-C(31) 227.7(15) V(4)-C(32) 227.3(15) V(4)-C(33) 236.6(14) V(4)-C(34) 245.3(15) V(4)-C(35)

 $Cp^*(Z^n)$ is the center of the pentamethylcyclopentadienyl ring coordinated to V(n) (n = 1,2,3,4).

Table 3. Angles $[^{\circ}]$ involving vanadium and oxygen in the tetramer $[Cp*V(O)(\mu-O)]_4$ (2), molecule **A**.

O(1)-V(1)-O(5) O(1)-V(1)-O(8) O(5)-V(1)-O(8) Z¹-V(1)-O(1) Z¹-V(1)-O(5) Z¹-V(1)-O(8) O(3)-V(3)-O(6) O(3)-V(3)-O(7) O(6)-V(3)-O(7) Z³-V(3)-O(6) Z³-V(3)-O(6) Z³-V(3)-O(7) V(1)-O(5)-V(2)	103.9(4) 104.5(4) 106.1(3) 115.6 113.6 112.3 103.3(4) 105.9(4) 116.2 111.5 114.9 129.3(5)	O(2)-V(2)-O(5) O(2)-V(2)-O(6) O(5)-V(2)-O(6) Z²-V(2)-O(2) Z²-V(2)-O(5) Z²-V(2)-O(6) O(4)-V(4)-O(7) O(4)-V(4)-O(8) O(7)-V(4)-O(8) Z⁴-V(4)-O(4) Z⁴-V(4)-O(7) Z⁴-V(4)-O(8) V(2)-O(6)-V(3)	104.5(4) 104.9(5) 104.8(4) 117.4 111.8 112.8 105.5(4) 105.4(4) 105.6(3) 114.9 112.3 112.5 165.2(5)
\ / \ /		\ / \ /	

 Z^n is the center of the pentamethylcyclopentadienyl ring coordinated to V(n) (n = 1,2,3,4).

are similar to the corresponding parameters of related molecules such as $Cp*V(O)Cl_2$ [12] and $[Cp*V(Cl)(\mu-O)]_4$ [12] (Table 4).

Experimental Section

The reactions were routinely carried out under argon in Schlenk vessels; the solvents were dried (pentane over Na/K alloy, CH₂Cl₂ over P₄O₁₀) and saturated with argon.

The parent compound, $Cp*V(CO)_4$ (1) [14], the octanuclear aggregate $Cp*_6V_8O_{17}$ (3) [5] and the azido complex $[Cp*V(N_3)_2(\mu-N_3)]_2$ (6) [8] were prepared according to the quoted literature procedures.

Synthesis of $[Cp*V(O)(\mu-O)]_4$ (2)

In a 250 ml round-bottomed flask, a solution of 75 mg (0.25 mmol) $\mathrm{Cp}^*\mathrm{V(CO)_4}$ (1) in 100 ml of pentane was stirred in air for 4 h. After standing over night, some insoluble black precipitate (up to 5 mg) had formed. The clear black pentane solution (which appears red in transparent light) was brought to dryness to give 50 mg (91%) of 2 as a black powder, dec. above 300° without melting.

Synthesis of
$$[Cp*V(N_3)_2(\mu-N_3)]_2$$
 (6)

Starting from 150 mg (0.50 mmol) of Cp*V-(CO)₄ (1), the oxidative decarbonylation in the presence of O₂ gas in pentane or toluene solution led to a mixture of 2 and 3. The black residue was dissolved in 10 ml of neat trimethylsilyl azide, Me₃Si-N₃. After 3-4 weeks at ambient temperature the solvent was evaporated under reduced pressure and the dark-green residue dried in a high vacuum to give 90-95 mg (79-83%) of

Complex	Cp*V(O)Cl ₂ (4) [12]	[Cp*V(O)(μ-O)] ₄ (2) (this work)	[Cp*V(Cl)(μ-O)] ₄ [12]
V = O	157.6(8)	161.3(8) av. 180.2(8) av.	180.0(2)
V-Cp*(Z)	199.9	203.9 av.	198.4
Cp*(Z)-V-O (terminal O)	113.2	116.0 av.	_
Cp*(Z)-V-O (bridging O)	_	112.7 av.	135.4
O-V-O (bridges)	_	105.6 av.	104.8(2)
V-O-V (bridges)	_	164.5 av. 128.3 av.	165.1(5)

Table 4. Characteristic distances [pm] and angles [°] in oxovanadium complexes.

 $Cp^*(Z)$ is the center of the Cp^* ring.

green-black **6**. The azido complex may decompose explosively above 100 °C, and scratching with a metal spatula can also cause violent disintegration. The spectroscopic data of **6** agree with the literature values [8].

X-ray structure determinations of $\mathbf{1}$ and $\mathbf{2}$ [15]

The reflection intensities were collected with graphite-monochromated Mo- K_{α} – radiation, λ = 71.073 pm. Structure solution and refinement was carried out with the program package SHELXTL-PLUS V.5.1; the temperature for both structure determinations was 296 K.

All non-hydrogen atoms were refined with anisotropic temperature factors. The hydrogen atoms were placed in calculated positions and refined applying the riding model with fixed isotropic temperature factors.

Crystal structure of $Cp*V(CO)_4$ (1)

Reflection intensities were measured on a four circle diffractometer Siemens P4. $C_{14}H_{15}O_4V$, orange platelet with dimensions $0.18 \times 0.14 \times 0.06$ mm, crystallizes in the monoclinic space group C2/c with the lattice parameters a = 1514.61(18), b = 680.56(8), c = 2900.7(3) pm, $\beta = 101.840(9)^\circ$, $V = 2926.4(6) \cdot 10^6$ pm³, Z = 8, $\mu = 10.840(9)^\circ$

 0.684 mm^{-1} ; 2986 reflections collected in the range $3^{\circ} \le 2\vartheta \le 50^{\circ}$, 2245 reflections independent, 1520 assigned to be observed $[I > 2\sigma(I)]$, full-matrix least squares refinement against F^2 with 173 parameters converged at R1/wR2-values of 0.051/0.121, the max./min. residual electron density was $0.362/-0.259 \cdot 10^{-6} \text{ e} \cdot \text{pm}^{-3}$.

Crystal structure of $[Cp*V(O)(\mu-O)]_4$ (2)

Reflection intensities were measured on the STOE Image Plate Diffraction System I. $C_{40}H_{120}O_8V_4$, a plate with dimensions $0.14\times0.12\times0.08$ mm, crystallizes in the triclinic space group $P\bar{1}$ with the lattice parameters a=1162.3(2), b=2014.9(4), c=2077.8(4) pm, $\alpha=110.61(3)^\circ$, $\beta=102.76(3)^\circ$, $\gamma=97.47(3)^\circ$, $V=4325.5(15)\cdot10^6$ pm³, Z=4, $\mu=0.874$ mm⁻¹; 36.709 reflections collected in the range $3^\circ \le 2\vartheta \le 56^\circ$, 19082 reflections independent, 2445 assigned to be observed $[I>2\sigma(I)]$, full-matrix least squares refinement against F^2 with 533 parameters converged at R1/wR2 values of 0.092/0.207; numerical absorption correction, the max./min. residual electron density was $0.684/-0.303\cdot10^{-6}$ e·pm⁻³.

Acknowledgement

Financial support of this work by the Fonds der Chemischen Industrie is gratefully acknowledged.

- [1] F. Bottomley, Polyhedron **11**, 1707–1731 (1992).
- [2] C. D. Abernethy, F. Bottomley, R. W. Day, A. Decken, D. A. Summers, and R. C. Thompson, Organometallics 18, 870–879 (1999).
- [3] Cf. M. Herberhold, A.-M. Dietel, J. Peukert, A. Pfeifer, and W. Milius, Appl. Organometal. Chem. 14, 519–526 (2000).
- [4] F. Bottomley, L. Sutin, J. Chem. Soc., Chem. Commun. 1112 (1987).
- [5] M. Herberhold, W. Kremnitz, M. Kuhnlein, M. L. Ziegler, and K. Brunn, Z. Naturforsch. 42b, 1520 (1987).
- [6] F. Bottomley, C. Ph. Magill, and B. Zhao, Organometallics 10, 1946 (1991).
- [7] M. Herberhold, A.-M. Dietel, A. Goller, and W. Milius, Z. Anorg. Allg. Chem. (2003), in press.
- [8] M. Herberhold, A.-M. Dietel, and W. Milius, Z. Anorg. Allg. Chem. 625, 1885 (1999).
- [9] M. Herberhold, A.-M. Dietel, unpublished.
- [10] W. A. Herrmann, W. Kalcher, H. Biersack, I. Bernal, and M. Creswick, Chem. Ber. 114, 3558 (1981).

- [11] M. Hoch and D. Rehder, Chem. Ber. **121**, 1541 (1988).
- [12] F. Bottomley, J. Darkwa, L. Sutin, and P. S. White, Organometallics 5, 2165 (1986).
- [13] F. Bottomley, D. F. Drummond, D. E. Paez, and P. S. White, J. Chem. Soc., Chem. Commun. 1752 (1986).
- [14] M. Herberhold and M. Schrepfermann, in: J. D. Woollins (ed.): Inorganic Experiments, Section 4.8 (Halfsandwich Carbonyl Vanadium Complexes), p. 211–216, VCH, Weinheim (1994).
- [15] Crystallographic Data (excluding structure factors) for the structures 1 and 2 reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications no. CCDC-201885 (2) and CCDC-201886 (1). Copies of the data can be obtained free of charge from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: int. code +(1223)336-033; E-mail: deposit@ chemcrys.cam.ac.uk