Rietveld Refinement of the Crystal Structure of α -Be₃N₂ and the Experimental Determination of Optical Band Gaps for Mg₃N₂, Ca₃N₂ and CaMg₂N₂

Olaf Reckeweg^a, Cora Lind^a, Arndt Simon^b, and Francis J. DiSalvo^a

^a Baker Laboratory, Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853-1301, USA

^b Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart

Reprint requests to Dr. O. Reckeweg or Prof. Dr. F. J. DiSalvo. E-mail: olaf.reykjavik@gmx.de

Z. Naturforsch. 58b, 159-162 (2003); received October 15, 2002

 α -Be₃N₂ powder was obtained by reacting Be metal with dry, flowing N₂ at 1600 K. The product contained 5.9(7) wt.% of BeO. The anti-bixbyite structure suggested earlier was verified through Rietveld refinement on the basis of X-ray powder data (*Ia* $\overline{3}$ (#206); *a* = 814.518(6) pm). The optical band gaps of α -Be₃N₂, Mg₃N₂ and Ca₃N₂ are compared with newly measured values for Mg₃N₂, Ca₃N₂ and CaMg₂N₂.

Key words: Beryllium Nitride, Optical Band Gap, Rietveld Refinement, Structure Elucidation

Introduction

Much progress has been made again recently in the field of binary nitrides of the first and second main group metals. A prominent example is the long sought after Na₃N [1] which was finally synthesized and characterized. Also the diazenide N_2^{2-} anion was found in the compounds SrN (= Sr₄(\tilde{N})₂(N₂)) [2], Sr₄N₃ $(\equiv Sr_8(N)_4(N_2)$ [3], SrN_2 [2] and BaN_2 [4]. Transparent red "Ca₁₁N₈" was found to be Ca₁₁N₆(CN₂)₂ [5], and the yellow transparent high-temperature form of Ca₃N₂ ($\equiv \gamma$ -Ca₃N₂) was shown to be Ca₄N₂(CN₂) [5,6]. Subnitrides such as Ca₂N [7,8], Sr₂N [8,9] Ba_2N [8, 10] (of which the latter is still not completely characterized and understood) and Ba₃N [11] were found to exist, but so far the reported ionic nitrides Sr₃N₂ or Ba₃N₂ are not proven to exist as binary phases since hydrogen or oxygen might be incorporated in significant amounts [9, 10].

So it must come as a surprise, that, while the structures of Mg₃N₂ [12,13], Ca₃N₂ [13,14], and the high temperature form of Be₃N₂ ($\equiv \beta$ -Be₃N₂) [15,16] are known, the structure of α -Be₃N₂ was never refined. The lattice constants and the space group were reported [13,17,18], but only an estimate of the structure on the basis of a Guinier powder diffractogram [17] is to be found in literature. These data were relied on thereafter [13,18]. We report here the first full Rietveld refinement of α -Be₃N₂ on the basis of X-ray powder data as well as measurements of the optical band gaps by diffuse IR reflectance spectroscopy on powders of Mg₃N₂, Ca₃N₂ and CaMg₂N₂.

Experimental Section

Due to the air sensitivity of these materials, all manipulations were carried out under a continuously purified and monitored argon atmosphere in glove boxes.

White microcrystalline material was obtained by reacting X-ray tube windows (Be, 99.999%, Phillips) which were placed in an alumina crucible in a alumina tube with dry, flowing N₂ at 1600 K. The resulting product was ground and reheated under these same conditions. After repeating this treatment three times, the final product contained some 5.9(7) wt.% of BeO (identified and the amount estimated by the refinement of the X-ray powder pattern). This impurity in the product is probably due to partial oxidation of the beryllium X-ray tube window which was not obvious with the naked eye. This oxidation of the otherwise fairly unreactive Be under the influence of the X-rays is quite common.

Mg₃N₂, Ca₃N₂ and CaMg₂N₂ have been synthesized following literature methods [13]. The optical band gaps have been determined by diffuse IR reflectivity measurements on powdered materials enclosed in quartz glass cuvettes (100-QX, Fa. Hellma, Germany) to protect the air-sensitive materials during the measurements. The absorption data can be calculated from the Kubelka-Munk function [19] (α /S) =

0932–0776 / 03 / 0200–0159 \$ 06.00 © 2003 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

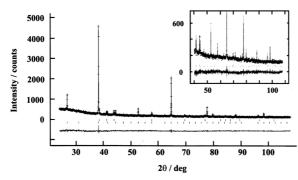


Fig. 1. Rietveld refinement of the powder diffractogram of α -Be₃N₂ with 5.9(7) wt.% BeO (0.2 mm capillary, Stoe STADI P II Powder Diffractometer). Tick marks indicate calculated Bragg peak positions for α -Be₃N₂ and BeO, the difference plot illustrates the difference between the observed (crosses) and calculated powder diffractogram (close line).

 $(1 - R)^2/2R$, where R is the reflectance at a given wavelength, and α and S are the absorption and scattering coefficients. S was assumed to be wavelength independent for particle sizes used here (larger than 5 μ) [19]. The optical band gap E_g was obtained by extrapolating the intercept from the step absorption edge in the plot (α /S)² vs. hv following literature [19].

X-ray investigations

The ground product was loaded in 0.2 mm, thin-walled glass capillaries. A powder diffractogram of the title compounds was recorded on a Stoe STADI P II powder diffractometer. All observed reflections could be indexed either to α -Be₃N₂ or BeO [20]. The program used for all the subsequent refinements was GSAS [21]. A plot of the final fit is displayed in Figure 1.

Information regarding the Rietveld refinement and the structural parameters are displayed in Tables 1-2.

Further details of the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany (fax: +(49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de), on quoting the depository number CSD-412667.

Discussion

 α -Be₃N₂ crystallizes like Mg₃N₂ and Ca₃N₂ in the anti-bixbyite structure which is often referred to as C-sesquioxide type (defect-type of the flourite structure, distorted cubic closest packing of the nitrogen atoms, the metal atoms occupy 75% of the tetrahedral holes in an ordered manner). The coordination pattern can be expressed as $^{3}_{\infty} \left[Be_{3}^{[4]}N_{2}^{[16]} \right]$, where the polyhe-

Fig. 2. Diffuse reflexion spectra of (from top to bottom) Ca_3N_2 , Mg_3N_2 and $CaMg_2N_2$.

dra around Be and around the nitrogen positions N1 and N2 are both distorted. The crystal structure of α -Be₃N₂ in itself is not completely unexpected, but the details remained elusive until now probably due to the reported toxicity of beryllium and most of its compounds. Despite the considerable amount of BeO in the product, a comparison with the lattice constants for α -Be₃N₂ and BeO obtained from literature indicates that no nitride oxide phases form under the conditions the product was produced (Table 1).

Be₃N₂ in both modifications is colorless, Mg₃N₂ is known as a yellow crystal and powder, and Ca₃N₂ is dark red-brown. The measured optical band gaps for Mg₃N₂, CaMg₂N₂ and Ca₃N₂ and also experimentally determined optical band gaps for α -Be₃N₂, Mg₃N₂ and Ca₃N₂ are listed in Table 3.

Compound	α-Be ₃ N ₂	BeO			
Space group, Z	Ia3,16	$P6_3mc;2$			
Lattice constants a, c [pm]	814.518(6) 269.67(1), 437.78(1)				
Literature data [pm]	814.82 [18] 269.79(2) / 437.72(2) [20]				
Density [gcm ⁻³]	2.707	3.013			
Phase fractions [%]	94.1(7)	5.9(7)			
Diffractometer; temperature	Stoe STADI P II (equipped with a Mini-PSD Detector); 293(2) K				
Monochromator; radiation	Germanium, Cu- $K_{\alpha 1}$				
Refinement range [°]	$24 \le 2\theta \le 108$				
Datapoints	4199				
Peak shape	Pseudo-Voigt function				
Background	Power series with 7 variables				
Observed reflections	136				
Fitted parameters	15				
$R_P, R_{wp}, R(F^2) / \%; \chi^2$	6.00, 7.54, 10.11; 1.246				
, , , , , , , , , , , , , , , , ,					
Atoms Wyskoff Site	x/a	v/a z/a II $[nm^2]$			

Atoms	Wyckoff-Site	x/a	y/a	z/a	Uiso [pm ²]
Be	48e	0.3865(11)	0.1465(10)	0.3758(15)	156(10)
N1	24d	0.9784(4)	0	1/4	114(11)*
N2	8b	1/4	1/4	1/4	114(11)*
Atoms	d [pm]	Atoms	d [pm]	Atoms	d [pm]
Be-N1	174.2(7)	Be-N1	172.4(9)	Be-Be	216.1(20)
Be-N1	181.6(7)	Be-N2	173.1(15)		

* Uiso of N1 and N2 were constrained to each other.

Compound	Appearance	Measured, optical band gap [eV]		Calculated band gap [eV]
		Literature	This work	(WIEN97; VASP)
α-Be ₃ N ₂	white	3.8 [24]		3.35; 5.2 [23]
$CaMg_2N_2$	white with yellow tint		3.25	2.27; 2.05 [23]
Mg_3N_2	yellow	2.8 [25]	2.80	1.63; 1.85 [23]
α -Ca ₃ N ₂	dark red	1.9 [23]	1.55	1.26; 1.17 [23]

Table 3. Experimentally deter-

mined and theoretically calculated band gaps of alkaline

earth metal nitrides.

The decrease of the gap value upon increasing atomic weight is a well known fact, e.g. from the group 4 elements and the isoelectronic Grimm-Sommerfeld phases. However, the remarkable color changes within the group 2 metal nitrides as well as the change from colorless Rb₂O to orange-red Cs₂O still seems to be puzzling with respect to the more electropositive character of higher homologues and, hence, the larger ionicity of their M-X bonds. It was Phillips [22] who pointed out the complex nature of the optical band gap. The two components, the homopolar and the heteropolar contribution to the gap size in our case work against each other as the heteropolar contribution is increasing with atomic number, but this in-

[1] D. Fischer, M. Jansen, Angew. Chem. 114, 1831 (2002); Angew. Chem. Int. Ed. 41, 1755 (2002).

crease is overcompensated by the decrease of the ho-

mopolar contribution. This tendency is quantified by a recent theoretical study [23] on alkaline earth metal nitrides, in terms of the decrease of covalency from Be-N via Mg-N to Ca-N. In this work the calculated values for the band gaps refer to the difference between top of the valence band and bottom of the conduction band, *i.e.* the electrical band gap. They are significantly smaller than the experimental values for the optical band gap, however, there is good agreement in the general tendency.

Acknowledgements

Support by NSF grant # DMR-9805719 is gratefully acknowledged. We thank Dr. W. König (MPI Stuttgart, Germany) for the diffuse reflectance measurements and the Max-Planck-Gesellschaft for a stipend for O. R.

- [3] Y. Prots, G. Auffermann, M. Tovar, R. Kniep, Angew. Chem. 114, 2392 (2002); Angew. Chem. Int. Ed. 41, 2288 (2002).
- [4] G. V. Vajenine, G. Auffermann, Y. Prots, W. Schnelle,

161

Table 1. Results of the Rietveld refinement of the X-ray powder diffraction data for α -Be₃N₂ and BeO.

Table 2. Atomic positions and isotropic displacement factors of α -Be₃N₂.

^[2] G. Auffermann, Y. Prots, R. Kniep, Angew. Chem. 113, 565 (2001); Angew. Chem. Int. Ed. 40, 547 (2001).

R. K. Kremer, A. Simon, R. Kniep, Inorg. Chem. 40, 4866 (2001).

- [5] O. Reckeweg, F.J. DiSalvo, Angew. Chem. **112**, 397 (2000); Angew. Chem. Int. Ed. **39**, 412 (2000).
- [6] P. Höhn, R. Niewa, R. Kniep, Z. Kristallogr. NCS 215, 323 (2000).
- [7] E. T. Keve, A. C. Skapski, Inorg. Chem. 7, 1757 (1968);
 D. H. Gregory, A. Bowman, C. F. Baker, D. P. Weston, J. Mater. Chem. 10, 1635 (2000); C. F. Baker, M. G. Barker, A. J. Blake, Acta Crystallogr. E57, i6-i7 (2001).
- [8] O. Reckeweg, F.J. DiSalvo, Solid State Sci. 5, 575 (2002).
- [9] J. Gaude, P. L'Haridon, Y. Laurent, J. Lang, Bull. Soc.
 Fr. Mineral. Cristallogr. 95, 56 (1972); N.E. Brese,
 M. O'Keeffe, J. Sol. State Chem. 87, 134 (1990).
- [10] H.-T. Künzel, Doctoral Thesis, Univ. Stuttgart, Germany (1980); O. Seeger, Doctoral Thesis, Univ. Tübingen, Germany (1994); V. Schultz-Coulon, Doctoral Thesis, Univ. Bayreuth, Germany (1998).
- [11] U. Steinbrenner, P. Adler, W. Hölle, A. Simon, J. Phys. Chem. Sol. **59**, 1527 (1998); U. Steinbrenner, A. Simon, Z. Anorg. Allg. Chem. **624**, 228 (1998).
- [12] D. E. Partin, D. J. Williams, M. O'Keeffe, J. Solid. State Chem. **132**, 56 (1997); J. David, Y. Laurent, J. Lang, Bull. Soc. Franc. Mineral Cristallogr. **94**, 340 (1971).

- [13] O. Reckeweg, F.J. DiSalvo, Z. Anorg. Allg. Chem. 627, 371 (2001).
- Y. Laurent, J. Lang, M. Th. LeBihan, Acta Crystallogr.
 B24, 494 (1968); P. Höhn, Doctoral Thesis, Techn. Univ. Darmstadt, Germany (1991).
- [15] P. Eckerlin, A. Rabenau, Z. Anorg. Allg. Chem. 304, 218 (1960).
- [16] D. Hall, G.E. Gurr, G.A. Jeffrey, Z. Anorg. Allg. Chem. 369, 108 (1969).
- [17] M. v. Stackelberg, R. Paulus, Z. Phys. Chem. 22, 305 (1933).
- [18] Nat. Bur. Stand. (USA), Monogr. 25, 18, 15 (1982).
- [19] V. Derstroff, J. Ensling, V. Ksenofontov, Ph. Gütlich, W. Tremel, Z. Anorg. Allg. Chem. 628, 1346 (2002); and references therein.
- [20] E.g.: J. W. Downs, F. K. Ross, G. V. Gibbs, Acta Crystallogr. B43, 425 (1985).
- [21] A. C. Larson, R. B. von Dreele, Los Alamos National Laboratory, Los Alamos, NM 87545, GSAS (General Structure Analysis System) (1994).
- [22] J.C. Phillips, Bonds and Bands in Semiconductors; Academic Press: New York and London (1973).
- [23] E. Orhan, S. Jobic, R. Brec, R. Marchand, J.-Y. Saillard, J. Mater. Chem. 12, 2475 (2002).
- [24] G. Soto, J. A. Diaz, R. Machorro, A. Reyes-Serrato, W. de la Cruz, Mater. Letters 52, 29 (2002).
- [25] C. M. Fang, R. A. de Groot, R. J. Bruls, H. T. Hinzen, G. de With, J. Phys.: Condens. Matter 11, 1 (1999).